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ABSTRACT

Theoretical physics aims to construct abstract mathematical models that quantify,
predict and eventually explain the nature of physical events. Two prime examples
of such kind of models are are general relativity (Einstein’s theory of gravity) and
quantum field theory (which describes fundamental particles and their interac-
tions). To discover how gravity works at small scales (or high energies), general
relativity and quantum field theory must be unified into a self-consistent the-
ory of quantum gravity. Unfortunately, it has turned out that this unification is
highly elusive.

An important reason for the difficulty of constructing self-consistent quantum
gravity models is the holographic principle. This principle, which originates from
the study of black hole thermodynamics, claims that in any realistic quantum
gravity model all physical information is encoded in a lower dimensional quantum
field theory. From string theory, a possible high-energy extension of gravity, it is
known that quantum gravity in a negatively curved spacetime is equivalent to
a (scale-invariant) quantum field theory that lives on the boundary of the space-
time. This mathematical realization of holography is known as the AdS/CFT
correspondence. Unfortunately, our own universe is not negatively curved but
there is hope that studying AdS/CFT might lead us to a model for positively
curved spacetimes like our own.

Recent research has proposed that certain facets of the AdS/CFT correspond-
ence can be described using quantum information techniques. For instance, it can
be shown that the entanglement between a spatial section of the boundary theory
and its boundary complement corresponds to the length of a minimal curve in
the interior which begins and ends at the outer points of the boundary interval.
Additionally, it is known that in certain spacetimes, extremal but non-minimal
curves can be related to the entanglement between internal degrees of freedom
of the boundary theory. In this dissertation these quantum information ideas
were translated and further expanded into tensor networks, discrete quantum
information models often used in condensed matter physics.

To advance beyond the current literature, in which it is known that minimal
curves in the interior of the spacetime can be described by holographic tensor
network models, it was discovered that the tensor networks needed to be fol-
ded up according to a specific symmetry pattern. Because tensor networks are
discrete, some of the symmetries of the underlying spacetime are broken, which
makes is harder to understand how to do origami with tensor networks. Using a
mathematical device, called the Coxeter group, it can be determined which kind
of folds are still allowed. By applying this procedure, this dissertation construc-
ted many-layered tensor networks for massive but non-rotating three-dimensional
black holes and certain "party hat"-shaped spacetimes called conical defects.



As a surprise extra, it was also discovered that these layered types of tensor
networks provide a (conceptual) link between internal boundary entanglement
and how the holography principle acts on small patches of spacetime. Specifically,
layered tensor networks can help understand how quantum information on the
boundary is related to quantum gravity in small regions of the interior where
the curvature of the spacetime is no longer relevant, i.e. flat space. Obtaining a
better understanding of how holography works in those regions, might lead to a
successful model of holography for universes like our own.
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SAMENVATTING

Theoretische fysica streeft naar het opbouwen van abstracte wiskundige modellen
die de aard van fysieke gebeurtenissen kwantificeren, voorspellen en uiteindelijk
verklaren. De twee voornaamste voorbeelden van dergelijke modellen zijn alge-
mene relativiteit (Einsteins zwaartekrachtstheorie) en kwantumveldentheorie (die
fundamentele deeltjes en hun interacties beschrijft). Om te ontdekken hoe de
(kwantum) theorie van zwaartekracht werkt op kleine schalen (of hoge ener-
gieén), moeten algemene relativiteit en kwantumveldentheorie verenigd worden
in een zelf-consistente theorie van kwantum-zwaartekracht. Helaas blijkt dat deze
vereniging uitzonderlijk moeilijk te bekomen is.

Een belangrijke oorzaak voor de moeilijkheid in het modeleren van kwan-
tumzwaartekracht is het holografische principe. Dit principe, dat voortkomt uit
de studie van zwart gaten, beweert dat in elk realistisch kwantumzwaartekracht-
model alle fysische informatie wordt gecodeerd in een kwantumveldentheorie die
leeft in een lager aantal dimensies. Uit snaartheorie, een mogelijke extensie van
zwaartekracht, is bekend dat kwantum-zwaartekracht in een negatief gekromde
ruimte-tijd equivalent is aan een (schaal-invariante) kwantumveldentheorie die
leeft op de grens van de ruimtetijd. Deze wiskundige realisatie van holografie
staat bekend als de AdS/CFT correspondentie. Helaas blijkt dat ons eigen uni-
versum geen negatieve kromming heeft, maar er is hoop dat het bestuderen van
AdS/CFT ons kan leiden tot een model voor positief gekromde ruimtetijden zoals
het onze.

Recent onderzoek heeft uitgewezen dat bepaalde facetten van de AdS/CFT
correspondentie kunnen worden beschreven met behulp van kwantuminformatie-
technieken. Zo kan worden aangetoond dat de kwantumverstrengeling tussen een
ruimtelijke sectie van de grenstheorie en zijn complement overeenkomt met de
lengte van een minimale kromme in de bulk van de ruimtetijd zolang de kromme
begint en eindigt op de eindpunten van het ruimtelijk interval op de grens. Boven-
dien is het bekend dat in bepaalde ruimtetijden, extreme maar niet-minimale
curven kunnen worden gerelateerd met de kwantumverstrengeling tussen interne
vrijheidsgraden van de grenstheorie. In dit proefschrift werden deze ideeén uit
kwantuminformatie vertaald en uitgebreid tot tensornetwerken, een set discrete
kwantuminformatietechnieken die vaak in de fysica van gecondenseerde materie
worden gebruikt.

Om verder te gaan dan de huidige literatuur, waarin bekend is dat minimale
krommen in de ruimte-tijd kunnen worden beschreven door holografische tensor-
netwerkmodellen, werd ontdekt dat de tensor netwerken opgevouwen moesten
worden volgens een specifiek symmetriepatroon. Omdat tensor netwerken discreet
zijn, is het moeilijker te begrijpen hoe dit soort origami met tensornetwerken
kan worden uitgevoerd. Met behulp van een wiskundig apparaat - de Coxeter

vii



symmetriegroep - kan worden bepaald welk vouwen en plooien nog steeds zijn
toegestaan. Door deze procedure toe te passen, was het mogelijk om gelaagde
tensor netwerken voor massieve maar niet-roterende zwarte gaten in drie dimen-
sies en enkele andere ruimtetijden te maken.

Bovendien werd ook ontdekt dat deze gelaagde tensor netwerken een (voor-
namelijk conceptueel) verband bieden tussen interne kwantumverstrengeling en
holografie voor vlakke ruimtes. Specifiek blijkt het dat gelaagde tensor netwerken
helpen te begrijpen hoe kwantuminformatie in de kwantumveldentheorie verb-
and houdt met kwantum-zwaartekracht in gebieden waar de kromming van de
ruimtetijd niet meer relevant is. Verder onderzoek over hoe holografie in deze
regio’s werkt, kan leiden tot een succesvol model van holografie voor universum
zoals het onze.
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PREFACE

This dissertation on Quantum Information and Holography was completed as
part of the two-year masters course in Physics and Astronomy at the Vrije Uni-
versiteit Brussel. The thesis and accompanying research, corresponding to 30
ECTS credits, were realized in a eight month period starting in October 2016
and ending in early June 2017. In July of 2017 an oral defense of this dissertation
will take place.

Early on in September 2016, Prof. Dr. Ben Craps proposed to align this re-
search thesis with the emerging international interest in the connection between
holography and quantum information. Recently, a large collaboration between
some of the leading institutes in both high-energy physics and quantum in-
formation has formed under the name It from Qubit: Simons Collaboration on
Quantum Fields, Gravity, and Information. The goal of the collaboration is to
foster interaction between the two fields in the hope of yielding answers to some
of the most fundamental questions in modern physics.

Against the backdrop of this international movement, Prof. Craps assembled a
team consisting of Dr. Gabor Sarosi, Tim De Jonckheere, Marine De Clerck and
myself to conduct research in this area. Dr. Sarosi is a postdoctoral researcher
at the Vrije Universiteit Brussel and the co-promoter of this dissertation. Tim
De Jonckheere is a doctoral student at the Vrije Universiteit Brussel. Marine
De Clerck is a fellow second-year master student whose thesis work is strongly
correlated with the research presented here.

Several members of this group have a close working relationship with Prof.
Dr. Vijay Balasubramian. Prof. Balasubramian is a full-time professor at the
University of Pennsylvania and part-time professor at Vrije Universiteit Brussel.
Prof. Balasubramian is also a principle investigator of the It from Qubit collab-
oration. The research in this dissertation is specifically supported by the FWO
project: Entanglement, space and time of which both he and Prof. Craps are the
promoters.

During March of 2017, Prof Craps hosted Prof. Dr. Erik Verlinde from the
University of Amsterdam for a Solvay Colloquium on the topic of Emergent
Gravity. In the margin of this colloquium several discussions with Prof. Verlinde
took place which turned the focus of this dissertation to the applications of our
research to questions with regard to sub-AdS locality. Later on, discussions on
these topics were held with other member of the University of Amsterdam, most
notably with Dr. Ben Freivogel and Prof. Dr. Jan de Boer.
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A GENTLE START

1.1 MOTIVATION
1.1.1  Why Holography?

Physics, as the most exact of all sciences, is well-known for its cultivation of
elegance through unrelenting unification of its subfields. Yet the two jewels of
contemporary physics, general relativity and quantum field theory, are typically
described by two inherently contrasting formalisms [1]|. A natural and experiment-
ally verifiable unification of both quantum physics and strong gravity, however
elusive, has been the holy grail of theoretical physics for several decades. Holo-
graphy is the primary exponent of the radical and powerful ideas born in this
quest for the theory of quantum gravity.

Quantum gravity, once found, will be able (among other things) to model,
predict and explain the peculiar behavior of black holes. The second law of ther-
modynamics [2] states clearly that no entropy can be lost. This fundamental
statement forces black holes to obtain the entropy contained in objects cross-
ing their event horizon. In an early attempt to reconcile this striking black hole
property with general relativity, Hawking [3] and Bekenstein [4] discovered that
entropy S of a black hole is proportional to the area of its event horizon, Apy.
In natural units, the exact relationship is given by

ApH
5= 4Gy’ (1)
where Gy is Newton’s constant. Intuitively, one expects the entropy of an object
to be proportional to its volume rather than to its area. The situation in black
hole physics however, indicates that all the information in the interior of a black
hole is represented, in its entirety, on its event horizon.

Later on, Hawking and Page showed [5] that similar properties are present at
cosmological event horizons in general. In 1993, 't Hooft theorized [6] that this
apparent property of entropy is a fundamental law of nature, generally present
and strictly necessary for any realistic quantum gravity theory.

The declaration made by 't Hooft was soon supported [7] by Susskind and
became known within the high-energy physics community as the "Holographic
Principle". The principle states that for a quantum gravity theory of a certain
spacetime, equivalent physics can be represented on the boundary of that space-
time using a theory without gravity. Entirely like in a classical hologram, the
information of a volume (the bulk) is encoded on a lower-dimensional boundary
area region.



A GENTLE START

Holography leaped into the limelight when it was realized [8, 9] that string the-
ory, a possible theory of quantum gravity [10], provides an exact correspondence
(a duality) between super-gravity, a high energy extension of general relativity,
regarded in certain curved background spacetimes in d + 1-dimensions and a pure
quantum field theory in d-dimensions. In the low-energy limit, supergravity re-
duces to some form of classical gravity and hence a powerful equivalence between
general relativity and quantum field theory takes shape.

The most intensely studied (and celebrated) example of a holographic duality
is the AdS/CFT correspondence |8, 11]. This correspondence postulates that a
specific kind of string theory in asymptotically Anti-de-Sitter is precisely equival-
ent to a conformal field theory on the boundary of that spacetime.

The depth of the radial direction of the asymptotically Anti-de-Sitter can be
shown [12, 13| to correspond (roughly) to the energy scale of the CFT. If one
accepts the CF'T as the fundamental description then the gravitational physics
can be interpreted as emerging from the boundary. The ultraviolet regime of the
CFT gives rise to the near-boundary region of AdS while the infrared behavior
of the CFT corresponds to the deep interior of AdS.

Figure 1: A typical representation of the AdS/CFT correspondence, adapted from Wiki-
media Commons [14]. For three-dimensional AdS, a stack of tessellated hyper-
bolic disks is shown, where each disk represents the spatial configuration of the
spacetime at a given time. The boundary represents the conformal field theory.
In this picture time flows upwards, the radial direction of AdS is horizontal.

By now the reader will have noticed that the holographic principle is more than
an elegant theoretical concept. The applications of the principle from black hole
physics to string theory are profound and diverse. Using techniques from quantum
information, holography will be shown to be even richer in variety. While this
all makes studying holography more than worthwhile from a theoretical vantage
point, AdS/CFT also adds considerable experimental motivation.



1.1 MOTIVATION

1.1.2 The Experimental Spoils of AdS/CFT

The AdS/CFT correspondence, being the prominent example of the holographic
principle, has received a lot of attention. The correspondence was first postulated
[8] by Maldecena in 1997 and as of the beginning of 2017 that original publication
has received well over 12000 citations [15|. This remarkable amount of recognition
is partially due to the applications of AdS/CFT in experimental nuclear physics
and condensed matter physics.

The Relativistic Heavy Ion Collider [16] (RHIC) at Brookhaven National Labor-
atory reported [17, 18] in 2008 that quark—gluon plasma [19], an exotic state of
matter that is formed when heavy ions are collided at high energies, was produced
and that its sheer-viscosity # was so small that it was nearly negligible. Three
years before this landmark experimental result, theorists [20] used AdS/CFT to
(correctly) predict this behavior of quark—gluon plasma.

4

Figure 2: A graphical representation [21] of the transformation between superfluid (left)
and insulator (right). The lattice in red can be interpreted as the crisscrossing
laser beams. Clearly, information has to be shared between the individual
atoms to go from one state to the other. This implies that the entanglement
is significant [22—24] during the phase transition.

In condensed matter physics AdS/CFT has been shown |21, 25] to be useful
to understand specific phase transitions. When a material undergoes a quantum
phase transition however, entanglement becomes profound [22—24, 26|, meaning
that the system cannot be described by independent particles, and conventional
condensed matter physics breaks down [25]. In these cases condensed matter
physicists have turned to holographic ideas [21, 25].

An example of such phase transition is that of a superfluid into an insulator.

Experimentally this can be achieved [25] by placing supercooled atoms into a web
of crisscrossing lasers and increasing the intensity of the lasers. At first the atoms
move around frictionless, as expected from a superfluid [27], but then the atoms
stop moving and form an insulator. Remarkably, the properties of the transition
are dependent on quantum parameters and can be explained |21, 25, 28| by use
of AdS/CFT.

RHIC [16] is a
relativistic
spin-polarized
research collider
using heavy ions
and protons.

Quantum phase
transitions are
instigated via
variation of an
(external)
parameter at zero
temperature.



By definition [31]
a bit, the basic
unit of
information, is in
either of two
possible states.

Contrastingly, a
qubit [34] can be
in a superposition
of both states of
the bit.

A GENTLE START

1.1.3 It from Qubit

All of the previous examples of holography (black holes, quark-gluon plasma and
phase transitions) have some connection to information theory. Sheer-viscosity
is a measure [29]| of how easily signals are propagated through a system. Entan-
glement is related [30] to the amount of information shared within a system and
the entire mathematical theory of information [31] itself is deeply rooted in the
properties of thermodynamic entropy. It is hence to be expected that holography
has deep links to information theory.

In 1990 John Wheeler famously postulated [32] that information might not only
be fundamental to (holographic) physics but that it might be the cornerstone of
all reality. He expressed this idea in his "It from Bit" philosophy: “It from Bit
symbolizes the idea that every item of the physical world has at bottom — a
very deep bottom, in most instances — an immaterial source and explanation;
that which we call reality arises in the last analysis from the posing of yes-or-no
questions and the registering of equipment-evoked responses; in short, that all
things physical are information-theoretic in origin|.|”

Within AdS/CFT, the entanglement entropy (the quantum informational meas-
ure for entanglement) of a spatial region of the boundary theory A is related to
the area of a bulk minimal surface 4 spanned by the edges of the regarded
boundary region by

_ Area(ya)

S 4GN

. (2)
The analogy with the Hawking-Bekenstein entropy is obvious. This remarkable
result [33] by Ryu and Takyanagi provides an intriguing link between the geo-
metry of asymptotically AdS spacetime and quantum information theory on the
boundary.

Hence, the physics community started to wonder whether "it" (the physical
world) originates from a quantum bit or "qubit" rather than some form of classical
information (the bit). Recently, an international research program [35] which aims
to expand the "It from Bit" idea to quantum information has emerged under the
unsurprising moniker "It from Qubit". Specifically, this collaboration wants to
foster the interchange of ideas between quantum information theory and high-
energy physics.

Promising preliminary research [36-38| indicates that entanglement entropy
(and thus quantum information) plays a significant role in the emergence of grav-
ity in AdS/CFT. From the Ryu-Takayanagi formula it was realized [39| that the
field theory on the boundary region A can be used to reconstruct the (quantum)
gravitational physics within the bulk region demarcated by the minimal surface
Y4- An example of this kind of geometry is shown in figure 3.

From the perspective of the boundary theory, this reconstruction of the bulk
physics implies unexpected and highly non-trivial locality properties in the radial
direction of the asymptotically AdS spacetime. In some cases [41] the minimal
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minimal bulk
surface ¥,

boundary
region A

Figure 3: A graphical interpretation of the Ryu-Takyanagi formula, adapted from the
’Quantum Information and Spacetime’ slides at QIP 2017 [40]. A time-slice
of AdS is shown including a geodesic (the minimal surface on a time-slice)
Y4. According to Ryu-Takyanagi the length of the geodesic corresponds to
the entanglement entropy of the boundary region A. The physics inside the
spacetime region between A and 74 can be reconstructed by the information
on the boundary region A.

surface cannot penetrate into the middle of the spacetime. Therefore it is an
important research question [42, 43| whether or not the entanglement entropy of
a boundary region can contain sufficient information to reconstruct the entirety
of the bulk geometry.

Another active research topic is based on the discovery [45] of natural quantum
error-correction properties in the reconstruction of bulk physics. Consider for
instance a set of disjoint intervals on the boundary. When their corresponding
minimal surfaces overlap, the boundary information used to extract the bulk
physics is partly redundant [44, 45| and hence the emergence of gravitational
physics is safeguarded against erasures of part of the boundary.

During the autumn of 2016 many of these ideas caught the eye of the general
public through Erik Verlinde’s paper [46] on 'Emergent Gravity and the Dark
Universe’. This paper strongly suggested that spacetime itself could be a mani-
festation of entanglement and that a correct implementation of emergent gravity
in this setting might potentially replace the need for dark matter in astrophysics.

The work presented in that paper assumes an extension of holography to de-
Sitter spacetime. Open questions [47] with regard to this generalization and some
challenges in the phenomenological aspects of the theory provide a unique motiva-
tion for a deeper understanding of holographic bulk reconstruction from boundary
entanglement entropy.

1.2 CONTEXT

To expand the current knowledge on holography with respect to bulk reconstruc-
tion and emergent physics, it would be useful to gain understanding of the value
of boundary quantum information in some more complicated spacetimes than

7
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AdS itself. As mentioned earlier, research has shown that it is not always certain
that in these cases, the entanglement entropy will suffice to describe the entirety
of the spacetime. In this dissertation these ideas will be expanded to the frame-
work of tensor networks, a set of quantum information tools at the cutting-edge
of contemporary holographic research. At the end, conceptual links to questions
regarding sub-AdS scale locality will be made.

1.2.1 Entwinement and Spacetime Origami

As specified previously, entanglement entropy is a measure of information shared
between spatially separated regions of the same physical system. Spatial entan-
glement entropy quantifies [34] exactly how much information is available about
a spatially distinct part of a system without accessing that particular region. It
is however not difficult to imagine a distinction between the different parts of a
system which is not (purely) spatial.

Product state Entangled state

(&3 ads) (Fednvasy)
Cal ey Cal =)

|¢)=IW)A®|¢>B |¢)¢|¢>A®|w>5

. [ITrrrr
) G-
/////////

Figure 4: A graphical representation [26] of entanglement entropy. Generically, a
quantum many-body system contains (quantum) correlations, here shown as
arrows, between its different constituents. When the system is divided into
two sub-systems A and B, they are either entangled (on the right) or not (on
the left). The trace over spatial region B, i.e. ignoring all information about
region B, yields either a pure or a mixed state, depending on its entanglement.

To be precise, recall from elementary quantum mechanics [48] that a quantum
system in a mixed state, i.e. a quantum statistical ensemble, is described by a
density matrix p. Accordingly, the quantum mechanical extension of classical
entropy, the Von Neumann entropy [34], of a system is defined as

S = —tr(plnp) . (3)

The Von Neumann entropy of a reduced density matrix of a spatial component of
the mixed state, like the one in question, is known as the entanglement entropy
[33, 40, 43]. Similarly, an entanglement entropy quantity computed as the Von
Neumann entropy of the reduced density matrix of a non-spatial subsystem can
be defined. For example [43, 49|, the entanglement entropy between the high and
low momentum modes of a generic Hilbert space for an interacting field theory
can be calculated.



1.2 CONTEXT

As explained earlier, spatial entanglement entropy can be holographically inter-
preted via the Ryu-Takayanagi formula. Application of a quantum informational
quantity, based on a non-spatial separation of degrees of freedom, to holography
would be scientifically valuable. Several options are available to make non-spatial
separations in a system, but the challenge is to develop one that has sufficient
meaning in a holography setting. One proposal in this regard is entwinement

l42, 43].

C_— < —

Figure 5: A graphical representation of the long string model, adapted from the original
paper [43]. The intervals are indicated in blue. On the left the same interval is
used on each level of the string so that the entwinement reduces to standard
entanglement entropy. On the right the interval shows a non-spatial separation
of the system indicating the usefulness of entwinement to discern between
internal degrees of freedom.

Consider for a moment the following "long string"-model [43], not to be con-
fused with string theory, that consists of long closed strings or spin chains which
are wound multiple times around a spatial circle. The resulting situation clearly
has more than one "internal" degree of freedom, more than one spin, per spa-
tial position on the circle. Shared information between these internal degrees of
freedom, can be interpreted holographically in the setting of 24-1-dimensional
gravity [50, 51|, and is quantified by a concept called entwinement [42, 43].

Spacetime solutions of 2+41-dimensional gravity with a negative cosmological
constant [52], are all asymptotically AdS and hence perfectly suitable for Ad-
S/CFT. Each of these solutions can be obtained by identification |51, 53] of the
spacetime-points of AdS under (subgroups of) the isometries of AdS and due
the geometric properties of AdS, boundary points are mapped to other boundary
points. The boundary of AdS is therefore essentially a closed long string which
is wound by the isometric identifications.

One way to make a separation in this model [43] is to distinguish between
the different layers of the wound string. Another option would be to regard dif-
ferent intervals on different levels of the string. Both these examples bring a
non-trival entwinement interpretation to the boundary of 2+41-dimensional grav-
ity solutions. If the intervals on different levels are the same, the entwinement
reduces [43] to the entanglement entropy of a boundary interval. In this thesis a
more concrete understanding of entwinement is sought through the use of tensor
network techniques.

2+1-dimensional
gravity has two
spatial dimensions
and one temporal
dimension.
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1.2.2 Holographic Tensor Networks

Entanglement plays, as indicated before, an important role in condensed matter
physics. Numerical models of large-scale entanglement, known as tensor networks
[54], have led to significant progress in the simulation of emergent condensed
matter phenomena of quantum many-body states |55, 56]. These networks employ
[57] a graphic representation of entanglement at different length scales by using
a hierarchical pattern of discrete units (tensors) to achieve an exactly solvable
model of (strongly coupled) systems. Recently, tensor networks have successfully
been introduced [57-59] to holography.

Emergent phenomena essentially arise [6o] due to interacting microscopic en-
tities which combined produce an effect on a macroscopic level. It is immediately
clear that the entanglement structure leading to emergent holographic phenom-
ena is suitable for interpretation in tensor networks but the true motivation for
the use of tensor networks in holography and quantum information is found in
the fact that tensor networks capture a much subtler range |57, 59| of aspects
of holography. Tensor networks can be constructed that explicitly include the
quantum error correction properties of holography [45] and even a discrete, al-
gorithmic version of the Ryu-Takayanagi formula has been found [57] for tensor
networks.

Figure 6: A graphical representation [57] of two types of holographic tensor networks.
The tensors are connected by legs or links which indicate entanglement. Notice
that each single tensor fits on a single patch of the tessellation of an AdS time-
slice. The size of each of these patches is of order of the AdS scale. This
property of these specific holographic tensor networks will be paramount to
this dissertation.

Concerning emergent gravity and dark matter, one hypothesis [36, 46, 58| is
that spacetime itself emerges from an underlying entangled structure. Because
each link between two tensors represents entanglement, it is not unthinkable that
tensor networks are a discrete toy-model of spacetime itself. A more conservative
approach interprets a tensor network solely as a discrete representative of holo-
graphic physics. Whether or not to regard spacetime as an emergent holographic
entity is currently subject of much debate but has no practical implications for
the work presented in this thesis.
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Questions remain about where the exact limitations of the different currently
known holographic tensor networks lie. Recently a few attempts |61, 62| have
been made to explore the nearly uncharted domain of tensor networks on space-
times that are not strictly AdS, like 2+1-dimensional gravity solutions. The work
presented in this thesis will go beyond the current literature by the use of layers
of holographic tensor networks. This layered approach also introduces the use of
entwinement to tensor networks.

1.2.3 The Road to sub-AdS Locality

Somewhat surprisingly, the results in this dissertation are conceptually linked to
an old question in AdS/CFT. The correspondence contains [12, 13] a peculiar
inversion of energy scales known as the UV/IR correspondence. Practically, this
inversion implies that an ultraviolet cut-off in the boundary theory corresponds
to a radial cut-off in the bulk. To some extent, this boils down to the idea [63]
that a point in the boundary CFT corresponds to a region of AdS-scale R 4,45 in
the bulk.

To see this, one could divide [13] the field theory into discrete cells so that
each of these cells contains one degree of freedom (per field). The sphere in AdS
corresponding |13, 63| to this, according to the radial cut-off, has a radius of order
Rgs. Taking into account the number of degrees of freedom in a SU(N) field
theory, Susskind and Witten [13] concluded that it takes N? degrees of freedom
to describe the bulk physics within a sphere of AdS-scale.

Later on it was shown [47] that such an AdS-scale region is indeed described by
a system of square matrices of dimension N. The question of how these N? matrix
degrees of freedom encrypt all the physical information inside an AdS-scale region
remains unsolved and is known as the sub-AdS locality problem [13, 47, 63].

If the entanglement of the internal structure of the bulk is ever understood, es-
pecially considering the corresponding entanglement in the boundary CFT, this
might explain, at least conceptually, how physical information can be encoded
in N2 degrees of freedom. Because tensor networks, which essentially model en-
tanglement, are in general exactly solvable, it is worthwhile to consider them in
this context. By combining entwinement with the notion of layered holographic
tensor networks and the long string model, a novel conceptual link between sub-
AdS locality and tensor networks is formulated in this dissertation.

1.3 THESIS STRUCTURE

In five parts, seven chapters (and several appendices) this thesis makes its way
from this gentle start to the state of the art in holography and quantum inform-
ation. The first part is the introduction. The second part presents a literature
study of relevant subjects in the research field. The third part deals with current
developments and original research. The fourth part covers the conclusion and

11
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outlook. The fifth and final part bundles the appendices, most of which are tech-
nical in nature. At the end of the dissertation, the bibliography and index can

be found.

e Chapter One: The first chapter, which you are currently reading, starts by
providing motivation for a study of holography and quantum information.
The second section of this chapter sketches the context of the specific re-
search presented in this dissertation in view of holography, quantum inform-
ation and theoretical high-energy physics. Finally, this chapter contains an
overview of the contents of the different chapters.

e Chapter Two: The path to AdS/CFT is paved with supertheories. The
second chapter tells the tale of supersymmetry and supergravity. In addition
to briefly reiterating some of the important points of quantum field theory
and general relativity, this chapter develops both of the super-theories in
a minimalistic fashion. The cardinal objective of this chapter is to bridge
the gap between the compulsory master courses and the specific needs
of this dissertation. A secondary point made here is that the AdS/CFT
correspondence is not obvious ab initio but also not entirely unexpected
due to symmetry arguments.

e Chapter Three: The third chapter focuses on the relevant pre-"quantum in-
formation" aspects of AAS/CFT. As the correspondence is a stringy mani-
festation of holography, string theory will be introduced (albeit sparsely)
to elucidate the origins of the AdS/CFT correspondence. Furthermore, the
large N expansion of gauge fields, the properties of conformal field theories,
correlation functions and the reconstruction of operators will be discussed
in a holographic context.

e Chapter Four: Having sufficiently developed a range of aspects in high-
energy physics throughout the previous chapters, this chapter incorpor-
ates some crucial facets of quantum information theory into the disserta-
tion. Entanglement entropy, the Ryu-Takayanagi formulation of AdS/CFT,
quantum error correction and some specific holographic tensor networks
are all discussed in depth.

e Chapter Five: The entirety of the fifth chapter deals with entwinement in
holography. As part of this venture, 2+1 dimensional gravity and the D1-
Dy CFT are discussed, leaning heavily on the material developed in the
earlier chapters on high-energy physics. On top of synthesizing some of the
literature’s most recent concepts in the field of holography and quantum
information, this chapter also provides the reader with a hitherto unknown
covering space picture of entwinement for massive, non-rotating BTZ black
holes.

e Chapter Six: The final corpus chapter deals with the implementation of en-
twinement in tensor networks. Up to now no work had been published on
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the application of entwinement to tensor networks. In this chapter the latest
developments in holographic tensor networks for non-trivial spacetimes are
augmented with entwinement concepts. The results of this method, includ-
ing the link to sub-AdS locality, are discussed in detail in this chapter.

e Chapter Seven: The concluding chapter contains an extensive discussion
of the results obtained in this dissertation and an overview of the new
challenges that have come to light during the development of the research.
Comments on the general state and evolution of holography and quantum
information are included, especially concerning research directions tangent
to those in this dissertation.

On many of the pages of this thesis, the reader can find small pieces of text in
the margin. These margin notes contain supplementary comments, additional cla-
rifications and complementary context. The objective of these notes is to provide
support and amusement for a wide range of readers with different backgrounds
without disrupting the logical flow of the main text. Technical calculations, code
listings and remarks on conventions can be found in the appendices which are
collected in the final part of this dissertation.
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A TALE OF TWO SUPER-THEORIES

2.1 INTRODUCTION

Maldecena proposed [8, 11| (but did not explicitly prove) that the holographic
principle has a concrete realization in the so-called AdS/CFT correspondence. In
the low-energy regime, which is of interest in this dissertation, the correspondence
reduces to a duality between two theories, a four-dimensional supersymmetric
field theory and a five-dimensional supergravity, that do not, ab initio seem to
describe the same physics. The aim of this chapter is to familiarize readers with
these super-theories, highlight the relevant differences between them and to show
them that even though the proposed duality is not obvious it is also not entirely
unexpected.

For instance, the symmetries of the theories on both sides of the duality will
turn out to match. In physics, symmetries are ubiquitous and shape theories by
limiting the different possible states and interactions which a physical system
can exhibit. In the case of the two theories regarded here, the matching of the
symmetries indicates that there should at least be some similarity between super-
gravity in five-dimensional AdS and the four-dimensional supersymmetric QFT
living on its boundary. To properly set the stage for a discussion on this symmetry
matching and to facilitate the rest of this dissertation, a few basic facts about
symmetries, gauge theories and spacetime transformations are recapitulated at
the beginning of this chapter.

2.2 SYMMETRIES OF A PHYSICAL THEORY

Consider for a moment, a set of scalar fields ¢; (x) propagating [64-66] through
a flat spacetime whose metric tensor is

Muw = UW = diag ("’/ AR AN ) ’ (4>

which corresponds to Minkowski spacetime in Cartesian coordinates x#. This
simple set-up suffices to briefly repeat much of the basic machinery of quantum
field theory. For instance, these scalar fields can then be used to describe an
action of a physical theory,

Sl = [ aPxc (g, 6)

where £ is a Lagrangian density. The infinitesimal symmetry variation of these
scalar fields is given by,

5¢i(x) = e Aaghi(x) (6)
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4'is a symmetry parameter and where Ay is a matrix or linear differen-

where €
tial operator applied to ¢;(x). Finally, using this notation, the Euler-Lagrange

equations, which yield the equations of motion, are

9 oL L
axt 69, ¢i(x)  Oi(x)

Speaking a bit more formally [28, 64], a symmetry transformation of the the-
ory is a mapping ¢; (x) — ¢/ (x) that leaves the action invariant, i.e. S [¢; (x)] =
S [¢! (x)] . Expansion of this definition and previous notions to other types of
fields, e.g. spinor fields, is straightforward. It is also worth noting that most
common field theories, like those used in the standard model of particle phys-
ics |65, 67], contain both symmetries of spacetime components, i.e. spacetime

=0. (7)

symmetries, and internal symmetries.

The importance of symmetries [64—66| to physics can hardly be overstated.
Primarily, Noether’s theorem [68, 69| relates the symmetry properties of a phys-
ical system to its conservation laws. If the variation in equation (6) is a symmetry
of the theory, then [64] the Lagrangian density is an explicit total derivative so
that,

5L . oL ; .
0L =€ | 5, AP () F iy Aad ()| = €h0KG, 8)

which can be made to read 9, ] ff‘ = 0 with the Noether current ]Z defined by

oL ;
]Z = —WAAGDZ(?C) +KZ- (9)

Figure 7: A graphical representation [70] of space-like hypersurfaces. The integral of the
Noether current over surfaces like these gives Noether charges. For more in-
formation on integrating in a differential geometric setting see the appendices.

Any Noether current is conserved [64, 65| for all solutions of the equations of
motions. For each Noether current ]ﬁ, an integrated Noether charge Q4 exists.
The defining To obtain a Noether charge [64] regard a space-like (D — 1)-surface X, then
property [71] of
space-like _ as

hypersurface is Qa / K ]A (x) ) (10)
that they
exclusively contain
space-like curves.
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This system of Noether charges and currents is valid for both spacetime symmet-
ries and internal symmetries. Both types of symmetries have different kinds of
applications and peculiarities, these will be addressed one-by-one in the upcoming
sections. First up, spacetime symmetries.

2.2.1 The Poincaré Group

The spacetime symmetries of relativistic quantum field theory form a symmetry
group, known as the Poincaré group [28, 64]. All elementary particles fit into
representations of this group. To define [28] the Poincaré group, it is necessary to
regard the infinitesimal length ds of a space-time interval. In Minkowski space-
time, the infinitesimal space-time interval is defined by

ds* = i, dxtdxV . 11
My

The elements of the Poincaré group [64] are symmetry transformations defined
so that they leave ds? invariant. The resulting group consists of two distinct parts
[28, 64], namely the Lorentz transformations and the translations of a point x*
by a vector a’. Lorentz transformations are characterized [28| by a matrix A
obeying

AN oty = Tpo (12)

while spacetime translations are characterized [28| by the vector a#. Consequently,
the symmetry transformations of the Poincaré group are denoted by the pairs
(A, a). Each of these pairs dictates a transformation on a spacetime point x
according to

Kt =AM XY 4 at. (13)

The group multiplication of the elements of the Poincaré group is defined [28] as

(A1,a1) 0 (Ag,a2) = (A2, a1 + Aqaz) . (14)
The infinitesimal Poincaré transformations give [64] the following variation,
6¢'(x) = A ad'(x) = [a'd, — A7 (x005 — x50,) ] ¢' (%) (15)

where the first part represents the translation with parameter a and where the
second part denotes the Lorentz transformation with parameter A°?. Assuming
a Lagrangian density with standard (i.e. of the form —%ay<pfaﬂ¢i) kinetic terms,
the Noether current for spacetime translations and Lorentz transformations are
respectively given [64, 66] by

TH, = "¢(x) 0p(x); + 6L & MFoe = —x,THs + x,TV,. (16)
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The charges corresponding to these currents are denoted [64] as P, and My, and
are vital to the development of supersymmetry. More in-depth analysis of the
Poincaré transformations and derivations of the above results can be found in
the literature [28, 64, 66]. Finally, it is important to note that strict adherence to
invariance under Lorentz transformations is an experimental constraint on many
theories.

2.2.2  Yang-Mills Gauge Theory

If a symmetry of a theory does not involve spacetime components, then this
symmetry is called an internal symmetry [64]. Local internal symmetries of a
quantum field theory are known as gauge symmetries [64, 67, 72]. These sym-
metries have an extraordinarily profound effect on physical reality because they
govern the possible interactions between particles and fundamental forces in a
quantum field theory.

Usually [64, 65|, internal symmetries form a compact Lie algebra which has a
linear representation in the form of n X n matrices t4. The infinitesimal trans-
formation of the internal symmetry is therefore given by

5¢' (x) = e D¢ (x) = —04(x)(ta) 9/ (x), (17)

where 64 (x) is the (gauge) symmetry parameter. The corresponding conserved
current [64] is

JFa = —0"i(x)(ta) ¢/ (x) . (18)

The conserved charge related to this current is denoted by Q 4. With this notation,
the commutation relations of the algebra are given [64] by

ta, ts] = fap“tc, (19)

where the different factors 43" (as defined by the above equation) are known as
the structure constants |65, 72| of the corresponding Lie algebra.

As an example of internal symmetries in quantum field theories, a generic
Yang-Mills theory with coupling strength gy is featured here. The Lagrangian
density [65, 72| for this kind of theory is

1
L = —MFVV(X)FV%JC), (20)
where the field strength of the gauge field A, (x) of the internal symmetry group
is given by
chv(x) = E)HACV(x) — ayAcy(x) + gYMfABCAAV(x)ABV(x) . (21)

Notice that the symmetry indices here, are (exceptionally) unsuppressed. The
use of the structure constants is allowed here, because the gauge field transforms
in the adjoint representation of the symmetry group.
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Notice [65, 72] that the Yang-Mills Lagrangian density is invariant under gauge
transformations,

¢ (x) = e Dtag (x) & Au(x) = 04(x) [ta, Au(x)] + 0, <9A(x)tA> .
(22)

and to obtain a derivative that is also invariant under these gauge transforma-
tions, the covariant derivative is defined as

Dy = 0y — igymAu(x). (23)

For the purposes of this dissertation is sufficient to say that the introduction of
the covariant derivative |72, 73| is needed for equation (22) to hold. Due to the
covariant derivative Dy, non-linear terms will appear in the equations of motion
for this theory. In perturbation theory, these non-linear terms are understood
[65, 72| as interaction terms.

The Yang—Mills gauge theory as briefly presented here is at the core of the
unification of the electromagnetic and weak forces in the standard model of ele-
mentary particle physics [65, 72]. In that setting the gauge group is chosen to
be Uy (1) x SUw(2) x SUc(3) so that the theory becomes applicable to electro-
magnetic, weak and strong nuclear forces. The success of this theory strongly
accentuates the importance of internal SU(N) symmetries to physics.

2.3 SUPERSYMMETRY

Unfortunately, the standard model of particle physics has its limitations |74, 75].
For instance, higher-order loop corrections to the mass of scalar field particles,
like the Brout-Englert-Higgs particle [76—78|, cause divergences. One possible
solution to this problem is to cut-off [65, 72] the theory at an energy scale at
which new physics should occur. Besides being ad-hoc, this solution is prone to
fine-tuning [75] issues. An alternative, more elegant, solution is the introduction
of supersymmetry.

The central idea of supersymmetry |75, 79] is that every fermionic particle has
a bosonic partner and the other way around. Supersymmetry solves the above
described divergence problem, because fermion and boson loops, which are now
in balance, add corrections with opposite signs [65, 72]. The divergences of both
kind of loops cancel |74, 75| each others divergence out and the calculation of the
scalar particle masses is no longer problematic.

Further motivation for supersymmetry can be found on purely theoretical
grounds. As argued previously, the symmetries of a theory (either spacetime
or internal) are crucial to the kind of physics the theory can contain. Hence, it is
worthwhile contemplating which kind of symmetry groups are, in general, allowed
in a quantum field theory. Coleman and Mandula [80] developed a framework in
which to answer this question which allowed Haag, Lopuszanski and Sohnius [79]
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to show that supersymmetries can, generically, be present. Based on Gell-Mann’s
totalitarian principle [81, 82| which states that everything that is not forbidden
is compulsory, it might be expected that supersymmetry is indeed a fundamental
symmetry of reality.

2.3.1  The Supersymmetry Algebra

In a supersymmetric theory (SUSY), the internal symmetry groups of theory
are extended to include supersymmetries [75, 83-85]. The generators Q! of the
supersymmetric transformations are spinors (as indicated with a spinor index a).
Regarding terminology, it is worth remarking that the supersymmetry generators
are known as supercharges and that the amount of different supersymmetries in
a theory is denoted by A so that in the above definition of the supercharges, the
index 7 can run from 1 to N.

In AdS/CFT, supersymmetry is important because both sides of the corres-
pondence make use of theories that are supersymmetric. As will be shown shortly,
the CEF'T side will have global supersymmetries while the AdS side is governed
by a local theory of supersymmetry. To gain a somewhat deeper understanding
of supersymmetries, its advantageous to take a look at their algebra; the superal-
gebra. To define this algebra it is convenient to start from the Poincaré algebra
[64] defined by,

[P¥,P'] =0,
[MM, PA] =i (y#APY — A PH) (24)
[M, MF?] = i ("f M + yH7 MPY — g0 MV — 517 MFH) ,

where, as indicated earlier, PV is the conserved charge of the translations and
where MPY is the conserved charge of the Lorentz transformations. The extension
[64] of the Poincaré algebra to the superalgebra, which contains the generators
of the supersymmetry, is

[PwQ«] =0,
[er Qa] = _% ('Y;W)aﬁ Qﬁ: (25)
{Qu, Q") = ~1 (1,)," P¥,

where the gamma-matrices 7v,, = % ['yy,'yv] are a specific case of the general
higher rank gamma matrices defined by y,.v = 7}, ... 7). Representations of
the superalgebras are used to build up Lagrangian densities for supersymmetric
theories. An additional benefit of using supersymmetric multiplets is that they
always [64, 75| contain an equal number of bosonic and fermionic degrees of
freedom.
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2.3.2 N =1 Supersymmetric Yang-Mills Theory

Reprising the SU(N) field theories that were discussed earlier, and adding in
supersymmetry leads to the of study supersymmetric Yang-Mills (SYM) theories
[28, 64]. To obtain the Lagrangian density of the N' = 1 supersymmetric Yang-
Mills theory, consider a supersymmetric multiplet consisting of a vector gauge
boson Ay (x) and its SUSY partner a spin-1/2 particle known as the gaugino,
A(x). Taking inspiration from the standard massless Yang-Mills theory, equation
(20), the obvious candidate for the action of a gauge theory with this content
with field strength FF" and covariant derivative D, is

1 i—
s:/— F' () Fyy () — SA(x)7" DA (x) | dix. 26
o P Fu() =~ ST DA (6)
It can be shown, although this is significantly non-trivial [64], that this action is
indeed invariant under supersymmetric variations. Notice that the action includes
a Dirac term which contains the fermionic fields A(x) that were introduced to
the theory by the supersymmetry.

2.3.3 N = 4 Supersymmetric Yang-Mills Theory

In a vein similar to the N' =1 case, a N/ = 4 supersymmetric Yang-Mills theory
[28, 64] can be constructed. An extra subtlety [64, 86] is that the four supercharges
Q! of this this theory can be rotated into each other using an SU(4) symmetry.
For later use, note the Lie algebra isomorphism SU(4) ~ SO(6) of this symmetry
group.

Several equivalent forms for the Lagrangian density for the N = 4 supersym-
metric Yang-Mills theory exist in the literature |28, 64|. The exact expression of
the Lagrangian density is fairly complicated and is unnecessary for this disserta-
tion. It is however worthwhile to note that the N = 4 SYM theory is obtained as
a special case [64] from N' =1 SYM, which illustrates [28] the close relationship
between the two theories.

The field content [64] of the N =4 SYM theory will be particularly beneficial
to grasping the structure of the AdS/CFT correspondence. The theory contains a
vector gauge potential, four chiral fermion fields (and associated chiral conjugates)
and six real scalars. In the next chapter this field content is interpreted in terms
of string theory degrees of freedom.

The single most important reason that A/ = 4 SYM, and hence this whole
foray into global supersymmetry, is relevant for AdS/CFT is that this Yang-Mills
theory is exactly scale invariant [28], i.e. scale invariant on both the classical and
the quantum level. Scale invariance is the critical indicator of the presence of
conformal symmetry in a theory. Conformal transformations are defined [71] as
those coordinate transformations that leave the metric g, invariant up to a
locally arbitrary positive scale factor. The scale factor is often chosen to be the
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N>

Figure 8: A graphical representation adapted from wikimedia commons [87] of conformal
transformations. Observe that a conformal map is a function that locally pre-
serves angles, pairs of lines intersecting perpendicularly are mapped to pairs
of curves still intersecting perpendicularly.

so-called Weyl scale factor e27(¥) so that conformal transformations take the form,

20()

Suv = Sy = € Vg (27)

This coordinate transformation equation implies [71]| that the angles are locally
invariant under conformal transformations and that conformal transformations
preserve causal structure. The length of an infinitesimal spacetime interval ds is
however modulated by the scale factor, in this case e27(*),

As conformal theories cannot have any preferred kind of length scale, their field
content is prohibited from being massive [88] because mass inherently correspond
to a length-scale. The particles of quantum field theory are approximately mass-
less in the high-energy limit and hence one could imagine that CFT’s like N’ = 4
SYM describe features of physics at high energies. In chapter 3, it is shown con-
clusively that N/ =4 SYM is the conformal field theory in the AdS/CFT duality,
the remaining question is how supersymmetry shows up on the gravitational side
of the correspondence.

2.4 SUPERGRAVITY

While supersymmetry is global in the CFT, the gravitational side of the conjec-
tured AdS/CFT correspondence adheres to the laws of a local theory of supersym-
metry, called supergravity [64]. In supergravity, the principles of supersymmetry
and general relativity mix to form a gravitational theory that gauges supersym-
metry. In AdS/CFT, a specific ten-dimensional extension of supergravity will
be used. As supergravity is a local theory, the symmetry parameter of super-
symmetry, the constant spinor €,, is turned into a spacetime dependent spinor
€x(x). This makes supergravity specifically suited for the description of fermions
in curved spacetimes.
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The challenge in supergravity is to find an appropriate gravitational action
that is invariant under these local supersymmetries. By the requirements of su-
persymmetry, a vector-spinor field is needed to describe the gravitons fermionic
superpartner [75], the gravitino. The fields for the graviton and the gravitino will
be discussed in the upcoming sections on supergravity but first, general relativity
is succinctly recapitulated.

2.4.1 Briefly, General Relativity

The concept of Einstein’s theory of general relativity is elegant and profound |89,
9o|: matter (or energy) tells spacetime how to bend and a curved spacetime tells
matter how to move. In general relativity, spacetime is regarded as a (smooth)
manifold upon which a test-particle can move according to the local curvature.
The resulting theory, which expands the principles of special relativity, is most
conveniently expressed in the language of differential geometry and is able to
describe gravity far beyond the Newtonian regime.

For the purposes of this dissertation, all geometrical properties of a smooth
manifold are given by its metric [71]. Mathematically speaking, a metric on a
manifold is a (non-degenerate) symmetric bilinear map [64] from the tangent
space to real numbers which contains geometric information on the manifold.
This map is specified by a local second rank tensor g,, but an explicit distinction
between the tensor and the map is usually not made.

The path of a free-falling test-particle x#(T) in a curved spacetime is given
[71, 89| by the geodesic equation

A% xH u dxV dxf
o Py =0 (28)

where T is the eigentime (the time as measured by the test-particle) and where the
Fzg are the Christoffel symbols. The Christoffel symbols, which are not tensors,
are defined by

1
l"f,‘p — ng (0v800r + 0pgvo — 00 Sup) - (29)

Christoffel symbols relate [89—91] local vector spaces (tangent spaces) to the local
curvature of the manifold. The Christoffel symbols are also used to express the
covariant derivative V, of general relativity.

The relationship between the matter in a spacetime and its curvature is given
by a set of coupled non-linear differential equations [89, go|, the Einsteins equa-
tions,

Gyv = Kszw ’ (30)

where Gy = Ry — % guvR is generally known as the Einstein tensor, k2 = 871G is
the gravitational coupling constant. The energy-momentum tensor T, represents
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Figure 9: A graphical representation [71] of a tangent space of a smooth manifold. A
tangent space is a local generalization of a vector space.

all the matter and energy in a spacetime. The Einstein tensor consists respectively
of the metric tensor g,,, the Ricci scalar R = ¢g#"R,,;, and the Ricci tensor Ryy.

The Ricci tensor is obtained by contraction from the Riemann curvature tensor
Rfypy. The Riemann curvature tensor embodies [89, go| all the information on
the curvature of a generic spacetime and is directly related to the Christoffel
symbols by

R oy = 0gThy, — 9,1, + 0 T} — TV T2, (31)

as discussed extensively in most textbooks [89, go| on general relativity.

Maximally symmetric spacetime solutions of general relativity are classified [71]
on the basis of their curvature. The flat solution is Minkowski space, the positively
curved one is the de Sitter (dS) spacetime and the negatively curved solution is
Anti-de Sitter (AdS) space. In AdS/CFT, the gravitational side of the duality
consists of higher-dimensional supergravity in some kind of augmentation of Anti-
de Sitter spacetime. Other less symmetric but important solutions [71] of general
relativity are the Schwarzschild solution for black holes and the Robertson-Walker
Friedmann metric for cosmology.

2.4.2 Introducing Frame Fields

To include fermions in gravity, an alternative way to deal with a metric has to be
introduced [64, 89g|. Additionally, this new approach provides a field, known as
the frame field, which represents the graviton in supergravity. First, notice that
the metric (tensor) can be diagonalized by an orthogonal transformation 0%,

S = O”VKubOhl, ) (32)

The resulting diagonalized metric matrix K; has D ordered eigenvalues, A%,
where D, as usual, denotes the spacetime dimension. The diagonalisation of the
metric allows for the definition of the frame field

ey (x) = /A" (x)O% (%), (33)
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which in four dimensions is commonly known as the "vierbein". In general, a
transformation between the frame field e}, (x) and the metric gy is of the form

g (x) = ¢, (%) Tapey (x) - (34)
A local Lorentz transformation can be used to construct a different frame field,
which will also adhere to equation (34). Therefore, in this dissertation, the differ-
ent choices in frame fields due to local Lorentz transformations are regarded as
equivalent and will not be distinguished.

It can be shown [64] that the frame fields €} form an orthonormal basis in each
tangent space. The frame fields el and e‘;l can hence be used to transform any
tensor from a coordinate basis (coordinate indices a,b,c,...) to a local Lorentz
basis (frame field indices p,v,p,...). Note that a local Lorentz transformation
only acts on the frame field indices and not on coordinate indices.

Clearly, a gauged (and thus local) theory of supersymmetry, i.e. supergravity,
will need a local treatment of Lorentz transformations, therefore general relativity
must be reformulated [64] using frame fields. It is convenient to introduce the use
of frame fields in general relativity via an action principle. Conveniently, this will
also allow for the introduction of a interactions of fermions, like the gravitino,
with gravity.

2.4.3 The Einstein-Hilbert Action

To understand general relativity with frame fields, it is useful to start from an
action principle for gravity [go]. The action for general relativity is

sz/de,/|det(g)| <21K2gWR,W> :/de\/\det(g)! (21,(21%) , (35)

where x2

is again the gravitational coupling constant and R = g"" Ry, the Ricci
|det(g)| in the volume
element of curved spacetime is due to some subtleties [71, 91| in the calculus of
p-forms [91] which are discussed in the appendices.

After varying the action (35) with respect to the metric and assuming (incor-

scalar for a torsion-free connection. The origin of the

rectly) a vanishing surface term, one can obtain the Einstein equations. This
action for general relativity was published [93] by Hilbert and is therefore known
as the Einstein-Hilbert action. To rephrase this action in terms of frame fields,
b = @, (x)dx" , is needed. The components w;,"(x)
of this one-form are known as the spin connection [64, 94| because they relate
spinors, specifically fermions, to the gravity action.

the connection one-form w

2.4.4 Leveraging the Spin Connection

Within general relativity, the spin connection plays the role of the gauge field.
For a torsion-free manifold, the spin connection is given [64] by

w,? = 26”[”8“461,117] — ev[“eb]”eycavegc. (36)
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This spin connection wy”b transforms under coordinate transformations as a
Yang-Mills potential would under a gauge transformation for an O(D —1,1)
group. Therefore [64], the spin connection behaves as a gauge field of Lorentz
transformations so that the spin connection defines a covariant derivative,

_1yab 1
P 3 = ) & D) = (B ™) 9. (1)
Correspondingly [64] the field strength of this gauge like theory is
R;wab = aywvab - avaab + wyucwvcb - wvacwycb ’ (38)

which is readily recognized as the frame field equivalent of the Riemann curvature
tensor, conform equation (31). The Einstein-Hilbert action can be fully rewritten
[64, 94] in function of frame fields by use of this new expression for the Riemann
tensor,

1
S = /dDX‘det(E)‘ <2K2€g€1b/RVVub> . (39)
Fermions ¢ can now readily be included [64] by extending the Einstein-Hilbert
action to
S — dD d 1 M VR ab 1 “D 1*% u
= x |det(e)| 52ty — EB’J')’ ny + Elp Yy - (40)

2.4.5 The Rarita—Schwinger Field for Gravitinos

The final missing part of supergravity is the appropriate vector-spinor field for
the superpartner of the graviton; the gravitino |75]. Peculiarly, the gravitino field
Py is exactly the gauge field of local supersymmetry transformations [64]. The
field for the gravitino is named the Rarita—Schwinger field |96] after its inventors
and its own gauge transformion is

Pu(x) = Pu(x) + 9ue(x), (41)

where the symmetry parameter €(x) is, as expected, a spacetime dependent
spinor.

From general principles [64, 96] it is inferred that the action for the Rar-
ita—Schwinger field, must be Lorentz invariant, first order in spacetime deriv-
atives, Hermitian and invariant under the supersymmetric gauge transformation
postulated in equation (41). The appropriate action fullfiling [96] all these re-
quirements is given by the Lagrangian density

L =Py, ,. (42)

The corresponding equation of motion is

Yoy, = 0. (43)
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To obtain supergravity, which essentially is a gravitational gauge theory of su-
persymmetry, the Rarita—Schwinger field must be aptly combined with a frame
field formulation of gravity. The resulting theory then predicts how the above
equation of motion and Einstein’s equation are modified to fit each other.

2.4.6 Basic Supergravity

Any version of supergravity [64, 84] must at the very least contain a supersym-
metric multiplet consisting of a frame field, that describes the graviton, and
N vector-spinors that describe the corresponding gravitinos. The action for the
simplest case of supergravity, which is minimal ' = 1 supergravity [64], is

1 1 s
S = E /de |d€t(€z)|@ [eayeaVmeb - lp}lr)/yvaleP] 4 (44)

where the covariant derivative is taken with respect to local Lorentz transforma-
tions,

1
DV = a}l + iwwb'y”h . (45)

To conceptually understand the origin of this action, note that the first part of
the action is simply the Hilbert-Einstein action, equation (35), while the second
part can easily be identified as a natural extension of the action of the Rar-
ita—Schwinger field, equation (41). The transformation rules for the different ele-
ments of the Lagrangian density are

%@%%%Wﬂédﬂ¢w@)& Yu(x) = Yu(x) + Dpe(x). (46)

The proof of invariance of the supergravity action, equation (44), under these
transformation rules is highly involved [64], even in D = 4, and will not be
covered in this dissertation. The result [64] however is that variation of the action
with regard to the Rarita—Schwinger field yields an equation of motion for the
gravitino that is the dynamical extension (9, — D) of the free field equation,
equation (43),

YDy, = 0. (47)

Einstein’s equations are obtained from the supergravity action via variation with
respect to the frame field but they are adapted so that the energy-momentum
tensor now includes the contributions of the gravitino. Therefore, the supergrav-
itational action as shown here, describes a self-consistent gravitational gauge
theory of supersymmetry.

2.4.7 Ten-dimensional Type IIB Supergravity

A (low-energy) treatment of the AdS/CFT correspondence requires [28, 86|, as
mentioned before, a ten-dimensional extended version of supergravity. When con-
sidering extended supergravity (N > 1) in higher dimensions, i.e. 4 < D < 11,
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the supersymmetry algebra determines [64] the different possible types of super-
gravity. In ten dimensions, there are three options: the theory either has one
chiral supercharge Q,, two chiral supercharges of the opposite chirality or two
chiral of the same chirality. The first option is known as Type I, the second
and third options are respectively known as Type IIA and Type IIB. Due to
sting theoretical reasons, Type IIB supergravity is of relevance for the AdS/CFT
correspondence.

Certain non-perturbative solutions [64, 86| of type IIB supergravity, called
D3-branes, are paramount |28, 97| to the postulation of the AdS/CFT corres-
pondence in string theory. Here it will be shown that in their near-horizon limit,
which is essentially their low-energy regime, D3-branes reduce to an AdSs x S°
spacetime which provides the AdS spacetime after which AdS/CFT is named.
For the present discussion of D3-branes, only the bosonic field content of Type
ITIB supergravity is relevant. Under this restriction, the entire ten-dimensional
type IIB supergravity action reverts to [64]

1 E eFa,B'yUG 1
SiB = /dxw\/ 1g10] <2R10 - % — 58“4)8“4) , (48)

where g19 and Rjp respectively represent the determinant of the ten-dimensional
metric and the ten-dimensional Ricci scalar. The other symbols represent a 5-
form field strength F and a scalar field ¢, both of which have their origin in
string theory [28]. The indices &, B, v, 0, 0 are chosen [64] so that they first run
through x# | the Cartesian coordinates of Minkowski space, and then through
y* which are the coordinates of flat Euclidean space. This peculiar choice of
coordinates is motivated by the use of D3-branes in string theory.
The resulting line-element of a D3-brane [64] is

dxVdxt
ds3y = % +/ H(y")dnpdy"dy”, (49)

where H(y”") is a harmonic function. For the applications of D3-branes in the
string theory postulation of AdS/CFT, it is necessary to regard a stack of N
coincident D3-branes [86, 97|, which can be constructed by choosing [64] the
harmonic function H(y*) so that

L4
H(y") :14‘74/ (50)

where 7 = /6,,y"y? is a specific radial coordinate and where L* = 47ta’?¢;N is
the radius of the AdS space that will be obtained from these D3-branes. For now,
the reader may simply regard ' and gs as nondescript real positive constants,
later on (in a string theory discussion) they will be given a specific meaning.

The line-element of the stack of N D3-branes, as shown in equation (49), can
be rewritten to manifestly express [64, 86] the presence of a S° line-element,

vudxVdxt
dsty = ’7;¢H(yﬂ) + 4/ H(y®)(dr* +r*dQ3), (51)
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| " r—0

Figure 10: A graphical representation [98] of the geometry of (a stack of) D3-branes.
The throat of the D3-branes is in the ¥ — 0 region where the metric has a
horizon due to the specific form of H(y”). Away from the throat, the geometry
is asymptotically flat. Taking red-shifting into account, it is clear to see that
low-energy degrees of freedom of supergravity reside in the throat.

where dQ% is the standard metric on the unit 5-circle S°. The corresponding
metric is asymptotically flat for ¥ — oo. In the » — 0 limit however, the spacetime
has a horizon. The near-horizon limit is called the "throat" and is characterized
by H(y") ~ L*/r*, so that the line-element is given by

2 deTZ

ds2, = %nwdx”dxv + + L2402 (52)

72

This expression can be brought into a highly suggestive form after the introduc-
tion [64, 86] of a new radial coordinate z = L2/,

LZ
ds?, = > [d22 + yudxdx’] + L2dO2 . (53)

The first part of this line-element corresponds to a coordinate system of AdSs,
which is generally known as the Poincaré patch [97], so that the near-horizon
limit of D3-branes is indeed an AdSs x S® spacetime.

2.4.8 Scalar fields in AdS

For holography, the S° part of AdSs x S° is generally seen as an internal part
can be compactified |28, 86]. In essence this comes down to applying the Kaluza-
Klein method [gg|. This technique consists of writing the part of the equation of
motions that deals with S°-components as a harmonic expansion [86]. The result
is that massless fields of IIB supergravity on AdSs x S° are observed in AdSs as
infinite towers of massive particles.

Indeed [64, 86|, starting from the ten-dimensional Klein-Gordon equation for
a massless scalar field ¢ in AdSs x S°,

Viiss® + Va9 =0, (54)
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and setting

p=Y oY, (55)
1

with Y! the spherical harmonics of S%, reduces the equation to

I(I+4
Vi =nig  ni= Y (50)

The values for the scalar masses m; are due to the eigenvalue equation [64, 86/,

I(l+4
ViY! = _li+d 7 by, (57)

2.5 CONCLUSION

Expanding on an elementary discussion on the use of symmetries in physics,
supersymmetry and supergravity have been discussed in this chapter. Motivation
for this discussion is found in the conjecture that each of these theories represent
a side of an important duality; the AdS/CFT correspondence. The conformal
field side is proposed to be governed by an AN/ = 4 Supersymmetric Yang-Mills
theory while the AdS-side would be governed by dimensionally reduced (10 — 5)
supergravity on a stack of D3-branes. As shown in this chapter, these two super-
theories differ significantly in nature (global <+ local) and application (flat space
> curved space) and hence the proposed correspondence is neither trivial nor
obvious.

Yet, even in this early chapter there are some strong but subtle indications
[28, 64, 86] that there is indeed an equivalence between the two theories. For
instance, the AdSs x S° background obtained from the stack of D3-branes has, as
shown in this chapter, a SO(6) spherical rotational symmetry which corresponds
to the global SU(4) symmetry of the N' = 4 supersymmetric Yang-Mills theory.
In addition, the supersymmetric Yang-Mills theory also contains six scalars which
transform as directions along the 5-sphere in AdSs x S® do. It is truly remarkable,
especially in light of the importance of symmetries that was discussed here, that
the two theories of supersymmetry and supergravity have matching symmetries.
The next chapter will strongly motivate this surprising equivalence between AdS
and CFT based on string theoretical arguments.
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3.1 INTRODUCTION

As mentioned in the introduction, holography can most tractably be studied us-
ing the AdS/CFT correspondence [8, 9| (or a variant thereof). The AdS/CFT
conjecture can be defined [64] as the proposal of a “one-to-one correspondence
between the local fields in an AdSp1 (super)gravity theory and the (gauge invari-
ant, composite) operators in a D-dimensional conformal, quantum field theory”.
The goal of this chapter is to explore, clarify and solidify this proposition.

The previous chapter already alluded to the fact that D3-branes, solitonic
solutions of supergravity, are involved in the origin of the correspondence. Here,
in this chapter, D3-branes will be reinterpreted as string theory objects [100]
and coaxed into providing considerable confidence 28] in the existence of a holo-
graphic correspondence between AdS and CFT.

To showcase its versatility and to foster additional confidence in the conjecture,
a series of specific aspects of the AdS/CFT correspondence are discussed in this
chapter. These topics include, but are not limited to, the large N expansion
of gauge theories, CF'T correlators and AdS-Rindler bulk reconstruction. Given
this summary of AdS/CFT, the comparative impact of a quantum informational
perspective on holography can be analyzed in the following chapters.

3.2 A STRING THEORETICAL PERSPECTIVE

String theory [28, 64, 100| is an extraordinarily rich subject that can obviously,
but regretfully, not be treated in full (mathematical) detail in this dissertation.
Therefore, this dissertation aims to provide just the right amount of background
knowledge on string theory to elucidate the origin of the AdS/CFT correspond-
ence. Interested readers can learn more on string theory from several excellent
sources [100-102].

The main idea of string theory is to use extended objects to describe physics.
Instead of using point particles, the fundamental objects in quantum field theory,
string theory employs the concept of extended strings. While a point particle
sweeps out a worldline [86] through spacetime, a string [100], in contrast, sweeps
out a 1+1 dimensional worldsheet £. Such a worldsheet is embedded in a back-
ground spacetime and can be parametrized [100] by two coordinates; the proper
time T and a string extent parameter .

The motivation for this kind of parametrization for the worldsheet can be
found in the fact that the worldline of a particle is generally parametrized by
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XO

Figure 11: A graphical representation [86] of a worldsheet. This graphic contains the
essential idea of string theory that fundamental physics is best described
using extended objects instead of pointlike particles.

the eigentime 7. It is hence natural to retain this coordinate for strings. Recall
that the action [86] for a particle with mass m moving along a worldline with
coordinates x*(T) is

S = —m/ds = —m/dr\/gwarxﬂ(r)arx‘/(r), (58)

where gy, is the metric of the background spacetime. A string moving along a
worldsheet with coordinates X*(t,0) can similarly be described by the Nambu-
Goto action [28, 100],

where T is the tension of the string. The tension is defined [28| by

1

- 27w’ (Go)

with &’ a fundamental string theory parameter known as the Regge slope [28, 100].
The length I; and mass mg of the string are also defined [28] in function of that
parameter,

—~ 1
s — lX’ - —. (61)
msg

Because the Nambu-Goto action is manifestly non-linear in X#(t,0), the res-
ulting equations of motions will also be non-linear. To smoothen away this un-
pleasant property of the Nambu-Goto action, a worldsheet metric h,g must be
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introduced as an auxiliary field. The resulting action for the string is the Polyakov
action |28, 86],

Sp = =T [ \/det(hop)h*F g0, X" X" drde (62)

The Polyakov action has an expansive set of symmetries [28]. Both Lorentz
transformations and spacetime translations of the embedding spacetime leave this
action invariant and re-parameterizations of the worldsheet are also symmetries
of the theory. This last fact implies that the choice of parametrization (7, o) does
not contain any physical information.

3.2.1 Constraints and Boundary Conditions

As a consequence of the equations of motions resulting from the Polyakov action,
the energy-momentum tensor Ty of the worldsheet has to vanish [28]. This puts
constraints on the X"(7,0) fields, which are widely known as the Virasoro con-
straints [28, 100]. In addition to these constrains, the solutions of the Polyakov
equations of motions must also adhere to boundary conditions.

The spatial extension of the string is either periodic [100], which indicates a
closed string, or it has explicit boundary conditions which indicates that a string
is open. For open strings, the boundary conditions are either Dirichlet boundary
conditions,

oXH (T/ (7) ’boundary =0 s (63)

or Neumann boundary conditions,

a(TXﬂ (T/ U) ’boundary =0. (64>

Figure 12: A graphical representation of the boundary conditions for open strings adap-
ted from "A First Course in String Theory" [103]. The left side of the figure
represents the Dirichlet boundary conditions while the right side represents
Neumann boundary conditions.

The choice of boundary conditions has an effect |28, 100, 103] on the momentum
flow of a string. In the closed case, momentum just keeps flowing through the
string and hence it is conserved. Conservation of momentum is also valid for
a string with Neumann conditions. In the case of Dirichlet conditions however,
translational invariance is manifestly broken and therefore momentum is not
conserved. As a consequence, the hypersurfaces defined by the collection of string
endings with Dirichlet conditions become dynamical objects [28, 100, 103], which
are unserendipitously called D-branes.
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3.2.2  Solutions and Supersymmetry

To find solutions [28, 100] for the equations of motions of this Polyakov action,
the fields X*(t,0) are Fourier expanded. Just like in field theories, the terms
of the expansion can be interpreted as oscillations, which in this case are vibra-
tions of the string. After quantization [28, 100] the different boundary conditions
determine the different types of particle that each kind of vibrating string can
produce.

Interactions [28, 86] between strings are modeled by worldsheets with non-
trivial topologies. The topology of the non-interacting strings that have been
described up to now were either that of a cylinder (for a closed string) or that
of a strip (for an open string). The topology of an interaction between strings
is essentially obtained [86] by the splitting and joining of the worldsheet of the
strings.

In general this splitting and joining causes [28] either worldsheet ruptures or
the formation of additional handles on the worldsheet. Each kind of topology
resulting from these string interactions, can be interpreted [28, 86| as a term in
a perturbative expansion where the power of the term, expressed in function of
the string coupling constant g, is determined by the genus of the corresponding

—C M
2 ) ~Q

S
Figure 13: A graphical representation [86] of an interacting graviton in string theory,
at tree-level. Higher order diagrams will have a different topology and hence
contribute to a different power of g;.

worldsheet.

The theory as discussed up to now, only describes bosonic degrees of freedom
[101]. To introduce fermionic degrees of freedom to the theory, supersymmetry is
called upon once more [102|. From symmetry arguments it can be concluded that
superstring theory is most natural [28] in ten dimensions. This is essentially the
reason why ten is the amount of dimensions used in the supergravity theory in
AdS/CFT. That supergravity, which inherently possesses fermions, follows from
the low-energy limit [28, 64| of superstring theory is one of the more alluring
aspects of superstring theory.

3.2.3 Two-faced D-Branes

In (super)string theory, D-branes are a class of extended objects [28, 86, 100| that
serve as the endpoints of strings with Dirichlet conditions. D-branes are classified
by their spatial dimension and the type of a brane is indicated [28] by a number:
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a DO-brane is a point particle, a D1-brane is a (kind of) string and a Dp-brane is
a p + 1-dimensional hyperplane where D denotes the dimension of the embedding
spacetime. For the purpose of motivating the AdS/CFT correspondence, a stack
of N coincident D3-branes in ten-dimensional flat Minkowski space is considered.

Figure 14: An adapted graphical representation [28] of the ways in which open strings
can end on a D-brane. A string with two Dirichlet boundary conditions can
either begin and end on the same D-brane or start one D-brane and and on
another.

To support Maldacena’s proposal [8] of the AdS/CFT correspondence, this
D3-brane setup is considered in the low-energy limit of type IIB string theory.
It turns out [28, 86, 104] that there are two different perspectives in which to
contemplate this; one perspective for open strings and one for closed strings.
Which perspective is the right one depends on the value of the effective string
coupling for the stack of branes, i.e. gsN.

In the so-called open string perspective |28, 104], which is valid for gsN < 1,
the stack of D3-branes can be described as an extended object [28, 64] upon
which open strings end. Because of the chosen parameter regime, these open
strings act as perturbative effects [28] upon the brane. When neglecting massive
string excitations, which is allowed in the low-energy regime, the open string
dynamics can be described |28, 86] as a N' = 4 SYM theory, with SU(N) as
gauge group, living in the (four-dimensional) world-volume of the stack of D3-
branes.

From this perspective, D3-branes are seen to have two classes of excitations
[28, 86] which correspond to the six scalar fields and the one gauge field of four-
dimensional N' = 4 SYM, respectively. The first class of excitations |28, 64, 86]
of the D3-brane describes its rigid motions and deformations, which can be para-
meterized by the six coordinates, i.e. six scalars, or alternatively as open string
perturbations, transverse to the D3-brane worldvolume. The other class of D3-
brane excitations are internal perturbations |28, 64, 86] which can be identified
as the gauge field A" of the N' =4 SYM theory.

So in the low-energy limit, the open string perspective contains the gauge
theory belonging to the open string perturbations but there are still closed strings
around. Because the open string perspective is in the weak-coupling regime, the
closed strings do not interfere with the stack of D3-branes. The closed strings that
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live in ten-dimensional Minkowksi thus simply form a flat supergravity theory
there. In total, the open string perspective thus consists of a four-dimensional
N =4 SYM and supergravity in ten-dimensional Minkowksi space.

In the closed string perspective |28, 104], valid for the strong coupling regime
gsIN > 1, the stack of coincident D3-branes is regarded as a source in the low-
energy limit of superstring theory, i.e. supergravity. With this as a background,
the closed strings are seen as the propagating part of the type IIB string theory.
The spacetime curved by the D3-branes is a solitonic solution of supergravity
which has a near-horizon limit, a.k.a. the throat, as seen in the previous chapter,
namely AdSs x S°. Due to red-shifting in the throat, all of the string theory
physics there appears to be low in energy.

The characteristic length scale of the throat, L = 4mwa?g;N, is large [6.4, 86]
in the closed string perspective. This implies that the curvature of the spacetime
is weak so that stringy effects can be ignored and that approximation of su-
perstring theory by supergravity is validated. Away from the throat [28, 104],
this closed string perspective also looks like supergravity in ten-dimensional
Minkowksi space.

These two perspectives on stacks of D3-branes provide a different descrip-
tion of the same situation in a low-energetic type IIB superstring theory in flat
ten-dimensional Minkowski space. This indicates that two perspectives should
[28, 104], in some sense at least, be dual to one another. Both perspectives con-
tain a decoupled supergravity sector in ten-dimensional Minkowksi space. Both
supergravities are promptly identified [28] with each other. The remaining parts
of both perspectives should thus also correspond. The type IIB supergravity on
AdSs x S° is therefore expected to be (dynamically) equivalent with a N = 4
SYM on a flat four-dimensional spacetime. This is exactly what the AdS/CFT
correspondence proposes!

k

Figure 15: A graphical representation [28| of a stack of coincident D-branes. The left
open string perspective is shown on the left, the closed string perspective is
shown on the right. Notice the formation of a "throat" in the picture on the
right.




3.3 THE LARGE N EXPANSION OF GAUGE THEORIES

3.2.4 A Correspondence, At Last!

Forgetting this whole string theory story for a moment, the theories on both sides
of the AdS/CFT correspondence look very different. Yet, the AdS/CFT corres-
pondence states [8, 9| that the two theories are dual to another. This is certainly
a strong statement. Therefore it is befitting the current situation to exercise some
caution. Certainly in light of the fact that no proof for the conjecture has yet
been found, even though the literature contains an extensive range of persuasive
arguments in favor of the correspondence [28, 97, 104-106]. To deal with this
somewhat ambiguous state of things, language for the different gradations in the
range of validity for the proposed correspondence has been developed.

Typically, three forms (the weak, the strong and the strongest) of the cor-
respondence are discerned. In its weakest form [97, 104, 107|, the AdS/CFT
correspondence states that the two theories are dual to each other when grav-
ity is weakly coupled and the CFT is strongly coupled. In its strongest version
[97, 104, 107], the conjecture claims that the two theories are equivalent for all val-
ues of gs and N. The strong version of the AdS/CFT conjecture, which proposes
its validity for all values of gsN with large N, will be used and assumed through-
out the remainder of this dissertation. Some motivation for choosing N > 1 is
provided in the upcoming section.

3.3 THE LARGE N EXPANSION OF GAUGE THEORIES

As was just shown, a stack of N coincident D3-branes in string theory corresponds
to an N' = 4 SYM with an SU(N) internal symmetry. In this section it will
be argued that AdS/CFT can be used with reasonable confidence if N > 1.
Motivated [86, 104 by statistical mechanics, 't Hooft [108| pointed out that non-
abelian SU(N) gauge theories simplify significantly in the limit N — oco. In a
particle physics language [67], this parameter region would correspond to a gauge
theory with a large number of colors.

Figure 16: A graphical representation [86] of the difference between a planar diagram
(left) and a non-planar diagram (right). Notice that the edges of diagrams
have been glued together. A planar diagram can triangulate a sphere while the
non-planar diagram must drawn on a torus. Planar diagrams are dominant
in the 't Hooft expansion.
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The large N limit is interesting because it allows for a rearrangement [86] of
the perturbation terms in a quantum field theory so that they correspond to a
topological expansion |28, 86|, similar to that for string theory, with coupling
gs o 1/N. This strongly suggests [86] that non-abelian gauge theories at large N
are equivalent to (super)string theories, which in their low-energy limit reduce to
supergravity. This kind of relationship between gauge theories and supergravity
is principally a rudimentary version of the AdS/CFT correspondence.

3.3.1 't Hooft Expansion of Gauge Theories

From the previous chapter, it is known that an SU(N) Yang-Mills theory is
prime example of a non-abelian gauge theory. For convenience, the Yang-Mills
Lagrangian density, equation (20), is repeated here,

1

L= —%Fw(x)l-"”"(x) ) (65)

It can easily be seen [86] that this equation can be rephrased by the introduction
of the 't Hooft coupling A = g%MN,

N

;C:—ﬁ

Fu(x)FF (x) . (66)
In the 't Hooft expansion [108|, A is kept fixed and the expansion is performed
in powers of 1/N. Different powers of N correspond in different topologies of
the Feynman diagram, in a way similar (but inversely) to the expansion in g in
string theory. The clearest way to see this, is to replace |28, 86] each line in a
Feynman diagram by an oriented double line and gluing together the endpoints.
From topology [86], it follows that diagrams have an NZ=2" dependency, where
h is the number of handles of the surface associated to the double-lined diagram.
Because A is kept constant and N > 1, planar diagrams (those that have no
handles) are dominant |28, 86] in the large N expansion.

3.3.2 Large N in AdS/CFT

The question remains how the condition N > 1 has an influence on AdS/CFT.
From general string theoretical arguments [86], it can be shown that

L 2
a2 Ngym - (67)

Using the definition of the 't Hooft coupling [108] this expression can be rewritten
to read

(68)
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Two equivalent definitions [86] of the ten-dimensional Newton’s constant G = lg,
where [, is the Plank length, and G = % g4(x’4 show that the previous expression
can reformed to give
by (69
L) ~ 2N )
As discussed above, the length scale L has to be large to legitimize the use of
supergravity and therefore [,/L < 1 is required, or equivalently N > 1. The

string theory derivation of the AdS/CFT correspondence thus suggests [28, 86,
104, 107| that the SU(N) group of N' =4 SYM has a large N.

3.4 FIELDS, OPERATORS AND SOURCES

To grasp how the gravitational side of AdS/CFT emerges from the boundary
field theory, it is worthwhile to consider, for a moment, the following condensed
matter physics toy model [86]. The toy model consists of a discrete lattice system
with spacing a4 and a simple Hamiltonian,

H=Y Ji(x,a)0(x), (70)

x,i

where i labels the different operators O(x) which are coupled to different sources
(a.k.a. coupling constants) J;j(x,a). In these expressions, x denotes the lattice
positions.

The lattice spacing of this toy model determines [86] the explicit values of
the sources J;(x,a). The evolution of the sources with regard to a varying lattice
spacing is governed by some kind of renormalization flow [28]. The sources can be
written as J;(x,u) given that u = (a,2a,4a,...) is defined as the length scale at
which the system is observed. Essentially, the lattice spacing variation parameter
u can be regarded as an extra dimension.

In this new higher-dimensional space, the evolution of the sources is governed
by some kind of (field) dynamics that represents the renormalization group equa-
tions. In AdS/CFT a similar process happens |28, 36, 86], there the new dimen-
sion is the radial direction of AdS and the dynamics of the sources is subject to
(super)gravity. This motivates the idea that in holography, gravity emerges via
renormalization group flow from a boundary theory (where the UV sources live).

In AdS/CFT, the sources, which act as gravitational fields in the bulk, have
dual conformal field operators in the boundary theory. To see how this works
explicitly |28, 64, 86|, write a scalar field ¢ in AdS as a Fourier transform with
z the coordinate of the emergent (radial) direction and x the collection of other
coordinates,

i
02 = [ G hie), ()
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Figure 17: A graphical representation [86] of the comparison between the discrete lat-
tice toy model and the situation in AdS/CFT. From this visual, it can be
understood that gravity emerges from UV sources that live at the conformal
boundary, denoted by d. Notice the orientation of the axis of the radial co-
ordinate.

and look for the resulting boundary source term ¢ o) (x). In terms of this Fourier
transform, the equation of motion for the scalar field of mass m in AdS reads

2413, (zl—daz fk> — 1222 f — mPLAf =0, (72)

where L is, as usual, the AdS radius. From near-boundary analysis [86] it is known
that the function fi(z) behaves as

fi(z) = A(k)zP~" + B(k)z®, (73)

near z =~ 0. In addition, it can be shown that A is

D D\?
A=+ <2) +m2L2. (74)

Neglecting the sub-dominant term in fi(z), the field ¢(z,x) at the boundary at
z = € becomes

(e, x) ~ eP7 A(x). (75)

To identify a boundary source ¢ g)(x) with the corresponding scalar field ¢(e, x),
any divergent term from ¢(€,x) has to be removed [28, 86]. This can easily be
done by identifying A(x) with ¢()(x) and setting,

() (x) = lim 22 P(z, x) . (76)

z—0

This explicitly and self-consistently shows that a boundary source is the near-
boundary limit of a gravitational field in the bulk, so that a field in the bulk
corresponds to a specific boundary operator. A deeper analysis 28, 86] of scalar
fields combines this calculation with the Kaluza-Klein reduction discussed in the
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previous chapter and shows that the Kaluza-Klein tower of scalar fields corres-
ponds to the operators in the A/ = 4 SYM theory. The same approach has
successfully [86] been applied to other fields, further bolstering trust in the Ad-
S/CFT correspondence.

3.5 CORRELATION FUNCTIONS IN ADS/CFT

As mentioned before, it is known that a dictionary exists between field oper-
ators O(x) on the CFT and gravitational fields ¢(z,x) in AdS. The boundary
value of such field has just been implied to act as the source for a corresponding
(conformal) field operator and combined with the motivation from string theory,
this suggests that the dynamics on both sides of the duality should match. To
considerable extent, this statement will be made concrete in this section. To do
this however some concepts from both conformal field theory and functional field
theory methods are necessary.

3.5.1 Functional Methods
The functional alternative to the canonical quantization of quantum fields is
to use the path-integral formalism [28, 66, 109]. In essence, this elegant form-
alism is built on an abstract action principle over the infinitely many quantum-
mechanically allowed paths of particles. In quantum field theory, the path integral
formalism translates to an action principle over all possible field configurations.
One advantage of the path-integral formalism that there is a strong link with
statistical mechanics, a downside is that it has a less well-defined mathematical
foundation than canonical methods.

For the purposes of this dissertation, it suffices to note that the transition
probability amplitude in this formalism is given [28| by,

<(Pf/ +00 ’ (Pl'/ —OO> = C/D(Pelsw} ’ (77)

where the integration measure D¢ is formally defined as the integrand over
all possible quantum field configurations that satisfy the boundary conditions
¢f,¢; at t = too. The action of the theory is denoted, as usual, with S[¢] =
[Fdt [ dP~1xL(¢,d¢) and C is a normalization parameter defined so that the
vacuum transition amplitude (0 | 0) = 1.

Another notion of interest is the correlation function [65] a.k.a. Green’s func-
tion G (...), defined as the expectation values of the form

) =01 ¢(x) .. ¢y). .. ¢(2) [0) = (¢(x) ... ¢(y) .- #(2)) , (78)

where the time-ordering over ¢-fields is implicit. As discussed in the appendices,
all physical information of a theory is incorporated into these correlation func-

G(xyz..
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A

Figure 18: A graphical representation [110] of the concept of path integrals. In quantum
mechanics, observable quantities can be expressed as a weighted average over
all possible paths the involved particles can take. Quantum statistical physics
is best described by a Euclidean version of this.

tions in a way equivalent to Feynman diagrams. Correlation functions like this
are related [65] to the path integral formalism by

Gy zw) = [ DPPE)-.9(1) ... ()] 510, (79)

In order to calculate correlation functions using path integrals, it is convenient
to introduce another functional concept, namely the generating functional Zy[]]
which is defined [28| by

Zo[Ji) = (0 | el @00 | gy, (80)

where J;(x) is the source of the operator O(x). Interest in generating functionals
is due to the property 28] that (Euclidean) correlation functions can be obtained
from them via functional variation,

(81)

1 0" Zo!]] }
Zo[J] 6] (x)-..6](y)---6](2)

where n is the amount of fields considered in the correlation function.

Ji=0

3.5.2 Correlation Functions of Conformal Operators

The Euclidean correlation functions regarded here [28, 64], are those of composite
operators O(x) on the boundary conformal field theory. The behavior [64] of these
kind of operators under scale transformations of the form x — x' = p~x is

O(x) = O'(x') = p®0O(x), (82)

where A, the scale dimension, is a real number which determines [64] the form of
a two-point correlation function of two of this kind of operators,

(0(x)0(y)) ~ (fy) (83)
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The choice to call the scale dimension A is deliberate. It can be shown [28, 86]
that, in AdS/CFT, gravitational fields with asymptotics as defined in equation
(73), act as the sources for operators with scale dimension equal to A as defined
in equation (74). To prove this, the above described functional field techniques
need to be discussed in a holographic setting.

The gravitational side of the AdS/CFT duality is described by a supergravity
action Sgigral¢], where the fields ¢ are dimensionally reduced from AdSs x R
to AdSs by Kaluza-Klein compactification as discussed in the previous chapter.
According [28, 86, 104] to the conjectured AdS/CFT correspondence, the gen-
erating functional Zg [qb(o)] of the composite operator O that is sourced by the
emergent fields ¢(z, x) is exactly

log(Zo|$(0)]) = Ssucral®] e 202805 () (84)
which implies that the logarithm of the generating functional of the boundary
conformal field theory is identified with the (renormalized) supergravity action,
evaluated at the boundary, for the corresponding bulk fields, subject to the ap-
propriate asymptotic boundary conditions.

The map between the generating functionals on each side of the duality can be
made more explicit, conform equation (81), by regarding |28, 86| the relationship
between the correlation function of all composite conformal field operators O;(x)
and the generating functional Zo[¢'] of all corresponding sources ¢*(x) evaluated
at the boundary,

(O1(x1) ... On(xp)) = —

(85)

$0)=0

1 6" Zol$(0)] ]
Zy [q)(O)] (S(P%()) (xl) s (54)1(10) (xn)

Via this relationship, the AdS/CFT correspondence allows for an algorithmic
[28] calculation of correlation functions of field operators O;(x) in function of the
fields ¢(z, x).

In the algorithm [28], the bulk fields corresponding to the operators in cor-
relation function are determined first. Then, via equation (84), the generating
functional for the gravitational fields of interest is calculated. Finally the func-
tional derivative with respect to the boundary values of these gravitational fields
is taken in equation (85), the result is the correlation function of the conformal
field operators. The following sections two applications [86] of this algorithm in
action will be shown.

3.5.3 Linear Response Theory

By use of the AdS/CFT correspondence, it is possible [28, 64, 86, 104] to calculate
the one-point correlation function (O(x)) in the presence of a source ¢y # 0,

_ 0Ssucral®)] '

(), = =5t (56)
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This expression can easily be rewritten in function of the gravitational fields

(0}, = limz> 53R, (87

Taking inspiration from the Hamilton-Jacobi formalism [112-114] allows for the
definition of the (renormalized) canonical momentum,

_ ISsucrale)
e S

where the SUGRA action is on-shell and the derivative is taken with respect to
the appropriate boundary conditions so that

(88)

(O(x))4, = lim zP~A11(z, x) . (89)

z—0

This one-point correlation function with a single source can be rewritten as an
expansion [86], a power series to be more precise, in function of the source ¢g

(O()), = (O} gya+ [ @7y (O(X)OW)) o(y) + -, (90)

which after truncation, and a small change in notation, becomes

(O()g, = (O(X)) g0+ [ Ay G, 1)0(v) (91)

For operators with a vacuum expectation value (O(x)) f0=0 = 0 the above expres-
sion reduces to

(O(), = [ 4y Gxy)0(y). (92)

The one-point correlation function with source as defined here, measures |28, 86|
fluctuations of the observables of the theory due to external perturbations. Due
to the truncation earlier in this derivation, this expression is essentially a descrip-
tion of the linear response of the system. In momentum space the relationship
between a one-point and the two-point correlation function simplifies, under the
assumption that G(x,y) is translationally invariant, [86] to

(O(k)) g, = G(K)po(K) - (93)

By virtue of the equations (76) and (89), reinterpreted in momentum space, the
whole above expression can be written in function of gravitational quantities,

Lk
G(k) = lim 2202 I;(f k; . (04)




3.6 ADS-RINDLER BULK RECONSTRUCTION

3.5.4 Two-point Function for Scalar Fields

The machinery from linear response theory developed for AdS/CFT in the pre-
vious sections can be applied [28, 86] to a system with a source that is a scalar
field ¢(z,x). The (renormalized) canonical momentum [64, 86| for the relevant
action of scalar field in AdS is

I1(z,x) = 17y/| det(g) |g70:0(2, %), (95)

where 7 is a nondescript normalization factor and where ¢" = diag(L/z,1,1,1),
is the metric for Euclidean Poincaré patch of AdS. The (rather technical) result
[86] of the linear response procedure applied on this setup, which is obtained via
equation (94), is that the two point function in momentum space is given by

L T(D/2—A) [k\**7P
_ _ D-1 K
G(k) = (2A — D)yL T(A—D/2) <2> . (96)
In position space, this two-point correlation function reverts [86] to
_ _ (2A-D)yLP! r'(a) 1
G(X,O) — <O(X)O(0)> - 7_[% F(—A+ D/2) ’ x |2A . (97)

In light of equation (83), this final expression shows that A, as defined in equation
(74), is indeed the scaling dimension of the operator O(x). As expected, the UV
sources that live at the conformal boundary match with the CFT operators there.
So in the spirit of the condensed matter toy model, the radial direction and the
physics in it, can be seen as emergent. This idea has been made significantly
more concrete by the introduction of quantum information theory to the study
of AdS/CFT. Before diving into the how and why of emergence, one more aspect
of the AdS/CFT has to be examined, that of AdS-Rindler bulk reconstruction.

3.6 ADS-RINDLER BULK RECONSTRUCTION

Even though the AdS/CFT correspondence is generally a well-understood ex-
ample of a theory of quantum gravity, some intriguing puzzles remain. One of
the aspects of AdS/CFT that remains obscure is the emergence of approximate
bulk locality [45]. The relationship between sources and operators, as discussed in
the previous paragraphs, manifestly respects locality |45, 115] in the x directions
because the conformal field theory does.

The story [45] of bulk locality in the emergent radial dimension z is, however,
significantly more subtle than in the x directions. The properties of bulk locality
in the z direction will turn out to be a crucial gateway to the later discussion on
quantum information and holography. To understand bulk locality in the z direc-
tion it is important to know that, assuming all bulk interactions are suppressed,
a bulk field ¢(z, x) can be represented on the CFT-side via

P(z,x) = /de(z,x)O(x), (98)
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where the integral runs over the conformal boundary coordinates x and where the
function K(z,x) is known as the "smearing function" [115-117]. An important
comment is that the smearing function K(z, x) obeys the bulk wave equations [45]
as would be expected from its z-dependence. Additionally, it is worth noting |45,
115, 116] that given this representation of ¢(z, x) in function of CFT operators,
the boundary Hamiltonian can be utilized to rewrite all CF'T operators in terms
of a Heisenberg picture of a single CF'T Cauchy surface.

—
R

Figure 19: A graphical representation [45] of bulk reconstruction in global AdSs (left)
and in the AdS-Rindler wedge (right). The Cauchy surface % is indicated on
the surface of the cylinder, i.e. the conformal boundary. D[A] is shaded green
and Wc[A] lies between the green area and the surface demarcated by the
dashed lines. The location of the bulk operator is marked by a solid black
point.

This approach does, however, have the unfortunate property [45] that when
¢(z, x) is taken close to the boundary (but not on it), the CFT representation still
depends on operators with support on the whole of the Cauchy surface. It would
be more natural to have a CFT representation whose support on the boundary
falls of with the decrease of z. The AdS-Rindler representation fulfills this desire.
[45]-

To obtain the AdS-Rindler representation [45], consider a subsection A of the
CFT Cauchy surface. The region of the boundary defined [45] so that inextensible
causal curves that pass through this region also intersect with A is called the
domain of dependence, D[A]. The intersection [39] of the bulk causal future and
past of such a domain of dependence, i.e. the bulk within future and past horizon
of the region, is known as the causal wedge Wc[A] of the CFT boundary region
A.

If the chosen CFT Cauchy surface is the t = 0 slice of the boundary and if
A is one hemisphere of this slice, W¢[A] forms the so-called AdS-Rindler wedge
[45]. To obtain a smaller region A, conformal transformations must be used. This
situation is shown in figure 19. Using the metric of this AdS-Rindler wedge, the
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CFT representations of bulk fields can be fully implemented [116] within the
causal wedge, showing local boundary dependency. The only real subtlety [45]
involved in this is that the smearing function K(z,x) no longer classifies as a
function and must be treated as a distribution against conformal field theory
expectation values [118, 119].

3.7 CONCLUSION

In this chapter, the conjecture of an AdS/CFT correspondence was studied as
an explicit realization of the holographic principle. By looking at two different
perspectives on D3-branes, where one yielded ten-dimensional supergravity and
one provided a four-dimensional supersymmetric conformal field theory, the con-
jectured AdS/CFT correspondence was concretely motivated. The large N ex-
pansion of 't Hooft, was also discussed to provide a better understanding of the
parameter region in which the strong version of the correspondence is proposed
to be valid.

The second half of this chapter focused on how (scalar) fields in AdS act as
sources for the CFT operators. Using functional techniques from quantum field
theory, the exact relationship between boundary physics and asymptotic bulk be-
havior was examined. At the end, a discussion on the AdS-Rindler representation
of bulk physics was provided. In addition to being another fascinating aspect of
the duality, the AdS-Rindler reconstruction will turn out to be central to ques-
tions regarding locality in AdS/CFT. In the next chapter, this question will
be re-interpreted in the language of quantum-error correcting protocols, trans-
itioning this dissertation into the study of quantum information theory and its
connection to holography.
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INCORPORATING QUANTUM INFORMATION

4.1 INTRODUCTION

Recently, it has been shown that quantum information is a tool useful [36-39, 41,
43, 46] for high-energy theoretical physics, especially holography. Even though
the theory of quantum information [34] has a long and rich history, the treatment
of the subject in dissertation will focus solely on its applications in AdS/CFT.
Specifically, problems in the context of AdS-Rindler reconstruction, which turn
out to be sensitive to description by certain quantum error correcting protocols,
will be studied.

Quantum information is, in itself, a worthy research topic but here a pick-and-
choose approach to its contents will be used. It would however be a disservice
to the reader not to briefly mention the history and main concepts of classical
information theory. In 1948, Claude Shannon wrote a seminal paper called "A
Mathematical Theory of Communication" [31] which kick-started the study and
use of mathematics in communication. Nowadays this field of study, or what it
has grow into, is known as information theory [120-122].

Shannon’s own concept of "information" [31, 122] consisted of a set of possible
messages, send over a noisy communication channel, with as goal to have the
receiving party reconstruct the messages with a known (or at least upper-bound)
error-probability. To make this all quantifiable, he defined [31, 122] the "bit", the
basic element of information, as a (classical) state being either zero (0) or one
(1). He also refined [31, 34, 122] the idea of informational entropy H,

H= —Zpilogz(pi), (99)

where p; is the probability of one of the messages of the set being send. This defin-
ition is remarkably similar [31, 122, 124, 125] to the Gibbs-Boltzmann entropy S
of statistical mechanics [2],

S=—kgp Zpi In(p;i), (100)

where p; is the probability of a micro-state choice from an ensemble. The conver-
sion between the two formula is of the form [2, 31, 122],

S =kgIn(2)Nh, (101)

where N is the number of micro-states and where h is the intensive equivalent to
the quantum informational entropy H. Landauer’s principle [123—125], which has
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been confirmed experimentally [126, 127] up to the individual bit [128] of data,
further supports the link between information theory and thermodynamics.

The discussion on black hole entropy [3, 4] in the introduction of this dis-
sertation already implicitly combined thermodynamics and information theory.
In light of the concrete link between micro-states and informational entropy as
discussed here, the origin story of the holographic principle in black hole ther-
modynamics advocates (adamantly) that (quantum) information theory is rel-
evant to holography. In AdS/CFT this suspicion can be made concrete via the
Ryu-Takayanagi formula |33, 129|. Before discussing this formula however, a few
quantum information concepts have to be summarized.

4.2 QUANTUM INFORMATION THEORY

The simplest of quantum information systems is the quantum bit [34, 130] or
"qubit". A qubit is a two-level quantum system, e.g. the spin of an electron
[131], which generally [34] is in an arbitrary superposition of the states of the
bit, defined by 0 — |0) and 1 — |1). Even though the physical realization of
these kinds of systems is highly interesting [131, 132|, this chapter will focus on
the conceptual aspects. The d-level generalization of qubit [34, 130] is known as
the "qudit" and in this dissertation a lot of attention will be given to the d = 3
version, the "qutrit".

197

Figure 20: A graphical representation [34] of a Bloch sphere. This sphere geometrically
represents the pure state space of a two-level quantum system, i.e. a qubit.
The sphere has a unit radius and antipodal points correspond to orthogonal
states. The basisvectors |0) and |1) are shown. A generic pure state in this
system is easily written [34] as |)) = cos(8) |0) + €/? sin(8) [1) as shown on
the figure.

Going back to the original question that Shannon asked himself, i.e. how can
information be communicated correctly, and placing it in a quantum mechanical
setting, yields the following situation [31, 34, 122]. Alice and Bob, the archetypal
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fictional characters [133, 134] in (quantum) information theory, want to com-
municate with each other using qutrits. Specifically, Alice wants to send Bob a
message k qutrits long, but she is worried that some might get lost or altered on
the way to Bob.

4.2.1  Quantum Error Correction

To soothe Alice’s worries, she and Bob may apply quantum error correcting
protocols [34, 44, 122| to their communication. For instance, Alice can embed
her k qutrits message into more than k qutrits, in a specific way so that even if
some qutrits are lost or altered, Bob can still recover them. For later purposes
in holography [45, 46, 57], it is sufficient to describe a system that only corrects
for erasures of qutrits, not for their alteration. Say that Alice wants to send a
message in the form of a state,

2
) = Zai i), (102)
i—0
where [i) € |0),|1),]2) and a; € C. Then the idea of quantum error correction

is to use a different state with more qutrits than the original one. For example
[45], take the new state
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which encrypts the original message with some redundancy. The states @ are
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T) = L (j012) + [201) + [120)) , (105)
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and are chosen [45, 57| so that no single qutrit contains enough information to
reconstruct the state W> More importantly, any two of these qutrits suffice for

Bob to fully reconstruct the state. Assume, for example, that Bob only received

(1021) + [102) + [210)) . (106)

the first two qutrits. Then he can make use of the existence [45, 137] of a unitary
transformation Ujy on those two first qutrits, that implements

(U2 ® ) i) = |i) @ —= (|00) +[11) +]22)) , (107)

1
V3
where indices on operators indicate on which qutrit that operator acts. It is then
obvious that this operator allows Bob to recover the original state (or message)

[¥), by

(Up ® I) W> =|y) ® \}g (]00) + |11) + |22)) . (108)
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A similar protocol is also possible [45] if Bob can only access the second and third
qutrits, or the first and third qutrit. Thus the communication between Alice and
Bob is protected against the loss, also know as erasure, of any single qutrit.

In quantum information science, the subspace defined in equations (104), (105)
and (106) is called the code subspace [45, 57|. From more advanced arguments
[34, 45, 135, 137], it is known that the states in such a code subspace have
to be entangled. This is not surprising, as reconstructing a state requires some
information of that state to be available to the states used in the reconstruction.

4.2.2 Density Matrices, Entanglement and Entropy

To define entanglement [34], the sharing of quantum information within a system,
in a strict mathematical sense, consider two non-interacting (sub)systems A and
B, held respectively by Alice and Bob, with Hilbert spaces Hy and Hg. Also
consider a composite Hilbert space H = H4 ® Hg. Then regard, for instance, the
state [138, 139]

m:émmmwmmwiQMPm» (100)

and notice that there is no way to rewrite it as a product state of pure states
from either H4 or Hg. Neither Alice nor Bob has the full information of the
system. Therefore, the composite system can only be described as a whole and
its constituents are (what is known as) entangled.

Recall from the introduction that this kind of states [26, 30, 48] can be de-
scribed by a density matrix p = |¢) (@| , which in this case is

1
p = 5 (101) {01] — [01) (10] — |10) {01 + [10) (10]) . (110)
The density matrix allows for the calculation [34] of the Von Neumann entropy,

S=—tr(pln(p)) = —ZAi In(A;) =0, (111)

where A; are the eigenvalues of the density matrix and where the trace is taken
over the whole system. The reduced density matrix [48] for the A subsystem, ps
is

o4 = tri(p) = 5 (10)4 (04 + 1) {11, (112)

where the trace is over the subsystem B and the corresponding Von Neumann
entropy is

SA = —tr (PA h’l(pA)> = —111(;) = 11’1(2) . (113)
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Spin Chain Quantum Field Theory

Figure 21: A graphical representation [129] of two of the situations where entanglement
entropy can be calculated. Both systems, the spin-chain and the quantum field
theory, are separated into two spatial regions A and B. A spin chain consists
of a series interacting quantum states, called spins. At least conceptually,
each spin can be considered to be a qudit.

So for the composite system the state |@) is pure but for its constituent subsys-
tems, the state is not pure. This means that the systems A and B are entangled
with one another.

The entanglement entropy [34], which measures the entanglement between
these two subsystems is exactly defined as the Von Neumann entropy of the
reduced density matrix as calculated above. In the holography community, the
expression "entanglement entropy" is typically reserved for subsystems that are
spatially separated but one could in principle think of more general kinds of sep-
aration. The holography community has an interest in these properties because in
the AdS/CFT correspondence both quantum error correction and entanglement
entropy show up in a surprisingly natural fashion.

4.3 HOLOGRAPHIC QUANTUM ERROR CORRECTION

In the previous chapter, the AdS-Rindler reconstruction of bulk fields was dis-
cussed. To obtain local support of bulk fields in terms of conformal boundary
operators, causal wedges were introduced. One peculiar property of this method
is that a bulk field (operator) ¢(z, x) lies in several different causal wedges, and
can thus be represented, via the smearing function, on more than one distinct
boundary region. The existence of these overlapping wedges has some rather
non-trivial consequences that can be linked to quantum information theory.

Consider for instance, a situation [45] with two overlapping wedges W¢[A] and
Wc([B], as shown in figure 22, which both contain the point (z, x). For an operator
at that point to have support on A and on B it must really only have support
on AN B but the point (z, x) does not (necessarily) lie in We[A N B] and so the
operator cannot be reconstructed from that boundary region. The solution to
this conundrum is simple, it turns out [45, 57| that the representations of ¢(z, x)
in different wedges are not the same CFT operator.
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A B

Figure 22: A graphical representation [45] of the situation with two overlapping causal
wedges on an AdS3 time-slice. The operator can be reconstructed in A and
in B but not in A N B. This is paradoxical.

4.3.1  Non-equivalent Representations

This difference in the CFT representations of bulk fields is even more clear in
a situation [45] where a bulk field ¢(z, x) lies outside the causal wedges W¢[A],
Wec[B] and W¢[C] as is shown in figure 23. The bulk field can be reconstructed,
from any one of the regions AUB, BUC and AU C but not from A, B or C
individually. These regions AU B, BUC and A U C have a mutual intersection
of three single points, but by including infinitesimally displaced copies of these
region, a set of six possible reconstructions regions whose mutual intersection is
completely empty, can be formed. There is manifestly no way in which the bulk
field can yield the same operator representation in all these regions.

This situation can be understood from the quantum error correcting code [34,
135] that was discussed in the previous section if it is rephrased in the language of
operators rather than that of the recovery of messages. To see this, define [45, 57]
an operator  that acts on single qutrits as

Qli) = ZjS lj) - (114)
j

For such an operator Q, there exist three-qutrit operators Q, called logical oper-
ations (135, 137] which implement the same action as Q, on the code subspace,
ie.

Qliy =2Qiilj) - (115)
]
For the three-qutrit code subspace discussed here [45], is can be seen that

Q12 = Uf,QUyy, (116)

where Q, which only acts on the first qutrit according to equation (114), operates
as

Quz|i) = ZjS 1) (117)
j
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This last equation implies that Qi is a logical operation with support limited
to the first two qutrits. Likewise Qp3 and Qi3 can be constructed [45] so that
a set of operators with non-trivial and varying support over the three different
qutrits is formed. Notice that these different operators have the same effect on
the code subspace. This situation is evocatively similar to overlapping wedges in
the AdS-Rindler bulk reconstruction.

C

Figure 23: A graphical representation [45] of the situation with three causal wedges. The

operator can only be reconstructed in any non-trivial union of A, B and C.

This indicates that the reconstruction is different in each disjunct region. The
black dot denotes the point (z, x).

In AdS-Rindler reconstruction [45, 115, 116] the field in the center of figure
23, can be represented either as an operator with support on A U B, an operator
with support on B U C or an operator with support on C U A. Obviously, this is
comparable to the situation with Qqz, Q23 and Q13. It has been proposed |45, 46|
that quantum error correction properties like these are integral to bulk emergence
from the boundary theory.

For instance [45, 57|, local bulk fields can be seen as logical operators on a
code subspace, which becomes increasingly protected against boundary erasure
as the bulk field moves away from the boundary. The code subspace [45] itself
is found by applying local bulk fields, as represented on the CFT via the global
reconstruction, onto the vacuum state. Any causal wedge W¢[A] contains exactly
[45] those local bulk fields that are needed to form the code subspace that protects
against erasure of the complement of A.

Every time the code subspace is made bigger, i.e. each time a local bulk field
is applied to the vacuum state, the energy of the new state increases [45]. At
some point, the approximation of a fixed background geometry breaks down
[45, 90, 140| and the whole discussion on quantum error correcting properties as
presented here, becomes void. In essence, this means |45, 57| that the different
CF'T operators only need to have the same action on a low energy subspace which
explains the peculiar behavior of the AdS-Rindler reconstruction.
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4.4 RYU-TAKAYANAGI: ENTROPY FOR A HOLOGRAPHIC UNIVERSE

In addition to quantum error-correcting protocols, an other element of quantum
information theory, entanglement entropy, can also be interpreted in holography.
Think about the Bekenstein-Hawking entropy formula for a black hole [3, 4] once
more,
5= A
4Gy

Here, it can be seen that all information inside the black hole "lives" on the

(118)

surface of its boundary. The question remains however, how and even if this kind
of holographic statement about thermodynamical entropy can be related to en-
tanglement entropy. On a conceptual level, entanglement entropy measures the
how much information about a system can be obtained if a part of the system
is inaccessible, just as [33, 141] the inside of a black hole is unavailable for an
outside observer. It is hence not entirely unthinkable that these two descriptions
of entropy show up together in AdS/CFT. In early and groundbreaking work,
Shinsei Ryu and Tadashi Takayanagi [33] developed a relationship between en-
tanglement entropy of the boundary CFT and an area-term in the bulk of AdS,
inspired by this similarity between entanglement entropy and thermodynamical
entropy. Specifically, they proposed that the entanglement entropy S of a part A
of the boundary CFT can be calculated (to first order) by

_ Area(ya)
= W , (119)

where 4 is the minimal surface in AdS, spanned up by the edges of the CFT

S[A]

region A.

4 @ >
YA
B 4 B

Figure 24: Two graphical representations [33] of the holographic calculation of entangle-
ment entropy on the boundary in the AdS/CFT correspondence. It has been
proposed [142] that bulk operators in the bulk spacetime inside ¢4 can be
reconstructed on A.

4.4.1  Validity in AdS3/CFT;

Because the Ryu-Takayanagi formula will be central to the rest of this disserta-
tion, its validity in the AdS3/CFT; case is checked here, at least qualitatively.
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To do this, the calculation of the area of the minimal surface is compared to con-
formal field theory results. According to the Brown-Henneaux relationship [143],
an early predecessor of AdS/CFT, the central charge ¢ of the CFT; is

o 3R Ads
2G

(120)

For a two-dimensional CFT living on an infinitely long line, the entanglement
entropy of subsystem A of length L is given [104] by

c L
S[Al=zlog | =),
4= §1og £ (121)
where a is a UV cut-off (recall the lattice spacing of the previous chapter) that
deals with the ever-present UV divergence of entanglement entropy in a quantum
field theory. In the Poincaré patch of empty AdSs, the geodesic equation [go] can
be used [104, 144] to prove that 4 is parametrized by

R
(z,x) = 3,15 (sin(s),cos(s)) with e<s<m—eg, (122)

where € = 2a/L incorporates the CF'T UV cut-off into the calculation. The area
of v4, which in this dimensionality is nothing more than a length, is given by

Area(v4) = 2Rugs /eﬂ/2 sij?s) = [— log <C0t (;))I/z = 2R p45 log <§> /

(123)

up to first order [104]. Using the Brown-Henneaux relationship, equation (120), in
equation (121) then shows that the Ryu-Takayanagi formula is valid in AdS3/CFTj.

4.4.2 Higher Dimensions, Heuristically

Extension to other dimensionalities and spacetimes is possible [33, 129, 141] but
in general, direct proofs of Ryu-Takayanagi are limited by the need to calculated
entanglement entropy in strongly coupled CFT’s. A heuristic approach is possible
[104, 141, 144] and will be briefly discussed here, but first, a bit more background
on entanglement entropy calculations using euclidean path integrals has to be
provided.

The calculation of the entanglement entropy in a two-dimensional CFT, like the
one on the conformal boundary of AdSs, is most conveniently achieved using the
so-called replica trick [104, 144]. The replica trick consists of formal differentiation
[43, 104, 141] with respect to an integer n,

S[A] = —1try (PA 11’1(pA)> = lim

n—11—n

In (104 (p4)) = — o [1ra (0] |
(124)
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In the Euclidean path integral formalism, the terms Tr(p ) (a.k.a. Rényi entrop-
ies) can be calculated by integrating over n replicas of the two-dimensional CFT.
The ground state wave-functional of the CFT is defined by [104],

t=0
0o = [ Dge lyrmos oo (125)
where ¢(t,x) is the field that defines the the 2D CFT. The corresponding bra,
(o[¢}(x)]], is found by integrating over the CFT from t = 400 to t = 0. The
boundary conditions ¢p(x) and ¢j(x) depend on x and here, ¢o(x) is the value
of the CFT fields at t = 0 as observed from t = co and ¢ (x) is the value of the
fields at t = 0 as seen from t = —o0.

Figure 25: A graphical representation from Rangamani and Takayanagi’s upcoming book
on "Holographic Entanglement Entropy" [141]. This visualization show how
to calculate the entanglement entropy of a region A of a two-dimensional
CFT in Euclidean signature. The region A has different boundary conditions
at the top and at the bottom. Here, these are indicated here by A™ and A™.
Each time an integral passes through a side of the A region, it goes to another
sheet of the Riemann surface.

The reduced density matrix pa(¢o(x), ¢j(x)) is obtained [141, 144] by putting
$5(x) = ¢o(x) outside the region A, and integrating, i.e. taking the trace, over
the CFT with boundary condition ¢;(x) just above the region A, and ¢, (x)
just below it. This situation is shown on each of the sheets of figure 25. The
trick [104, 141] to calculate the Rényi entropies try (0 ), is then to see that this
expression is obtained by integrating described above, but with n copies of the
CF'T cyclically linked to one-another at the boundary conditions. The resulting
geometry, an n-sheeted Riemann surface, is shown in figure 25.

The situation created here is thus essentially [43, 141, 144] that of an n-sheeted
Euclidean Riemann surface where the different boundary conditions let the path
integral cycle through the different sheets of the manifold. For a two-dimensional
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CFT, it has been shown that this approach does indeed give the Rényi entrop-
ies and it generally expected to work for higher dimensions. According to the
AdS/CFT correspondence, and as mentioned before, there is an equivalence
[28, 86, 104, 144] between the generating functionals of the CFT and the (su-
per)gravity theory.

Similarly [104, 144], the path integral that calculates tra (7)) should be equal
to the generating path integral for the gravity theory with a boundary geometry
equal to the multi-sheeted Riemann surface of the replica trick. In general, this
calculation is highly non-trivial [104, 144, 145] but it has been shown [144, 146]
that, in the n — 1 limit at which try (p7) is evaluated, equation (124) reduces
to the area of an extremal surface in the original AdS spacetime. This proves, at
least heuristically, the validity of Ryu-Takayanagi in higher dimensions.

4.5 HOLOGRAPHIC TENSOR NETWORKS

To advance the study of numerical simulations of emergence in strongly-interacting
situations, condensed matter physicists |55, 56, 147] developed computationally
efficient representations of the entanglement structures of quantum many-body
systems. These representations, called tensor networks [57, 147], are typically hier-
archical arrays, or other data structures, with tailer-made algorithms defined on
them. This dissertation will make extensive use of these quantum informational
research tools because they provide a tangible model of holographic emergence
of gravity in AdS/CFT.

Recall from the lattice toy model in the previous chapter, that some kind
of renormalization flow was needed to describe how the variables of the course-
grained model scaled with the lattice distance. To obtain a computationally ef-
ficient renormalization flow for quantum systems, entanglement renormalization
[148-150] was invented. The key idea [58, 148-150| in entanglement renormaliz-
ation is that the removal of local entanglement is essential to describe certain
approximations of ground-state wave-functions of quantum many-body systems.

The two ideas described above, tensor networks and entanglement renormaliza-
tion, were combined to formulate [148—152] the Multiscale Entanglement Renor-
malization Ansatz (MERA). MERA is a set of tensor networks, built to model
long-range entanglement in certain scale-invariant ground states while aiming to
efficiently approximate the corresponding wave functions. The main idea behind
MERA [58, 148-150] is to leverage hierarchical structure of the tensor network
to represent entanglement at different length scales, as shown in figure 26.

It has been pointed out [58| that a MERA network resembles the emergence of
gravity in AdS/CFT, at the very least on a superficial level. Here the set-up would
be that the quantum entanglement in the boundary theory acts as the input for
the network which would then reproduce some of the physics in the emergent
direction. The question then is whether concrete tensor network models can be
found that reproduce holography in a meaningful way.
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Spin chain
-0—0—0—0—0—10—0—0—0—0—0—0—0—0—0—0—

l State that encodes "entanglement per scale"

- = disentangler Y = coarse graining O— = site + bond

Figure 26: A graphical representation [58] of MERA. Without going into technical detail,
it can be remarked [58] that the disentanglers, a (unitary) type of tensors
shown as blue squares, are used to remove local entropy. The red triangles
are coarse-grainers, isometric tensors, that compress the unentangled degrees
of the ground state. In this picture the ground state is a spin chain.

4.5.1  Perfect Tensors

What a good tensor network model for holography should be able to do is a matter
of debate and a large number of different proposals [57-59, 61, 62, 153, 154] exist.
In this dissertation, the so-called HaPPY tensor networks [57] will be studied.
Next to being exactly solvable these tensor networks have the upside of being
uniform in the bulk: each HaPPY tensor network is structured upon a uniform
hyperbolic tiling, known as a hyperbolic tessellation |57, 62|, which incorporates
the hyperbolic nature of an AdS-slice. An important remark here is that a single
hyperbolic tile is of approximately AdS-radius size.

The building block of a HaPPY tensor network is the perfect tensor |57, 154],
a special case of the isometric tensor. To define [57] the isometric tensor, take two
Hilbert spaces Hq and Hp (with dim (H4) < dim (Hp) ) and isometric mapping
T between them. The map T can be written as a two-index tensor according to

T: |a) — Z |b) Ty, (126)
b

where {|a)} and {|b)} are the complete orthonormal basis for Hy and Hp re-
spectively. Because the map T is isometric,

Y T, Toe = bura- (127)
b

A tensor Ty, with this property, is known as an isometric tensor. Perfect tensors,
themselves, are defined [57] as even-indexed tensors that are (proportional to) an
isometric tensor from a set of its indices to the complementary set indices as long
as the complementary set is not smaller than the initial set.

Isometric, and thus perfect, tensors have the property [57] that an operator O
acting on a tensor leg related to Hy, can be replaced by an operator O’ acting
on a tensor leg that is related to Hg. These two legs are known as the incoming
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Figure 27: A graphical representation [57] of the crucial property of an isometric tensor:
the "pushing of an operator". This property, explained in equation (128), will
allow for an implementation of the HaPPY tensor network code.

and the outgoing leg. This operation is known as "pushing an operator through
a tensor". The proof of this property is straightforward,

TO = TOT'T = (TOTHT = O'T. (128)

4.5.2 HaPPY Tensor Networks

A network of perfect tensors can be used [57]| to describe a pure state of a set
of maximally entangled degrees of freedom. It can also be used as an encoding
map of a quantum error correcting code. These two approaches will be used
to construct two different HaPPY tensors networks, one that acts as a code and
models the quantum error correcting properties [45] of holographic emergence and
one that forms a state and carries an algorithmic version of the Ryu-Takayanagi
formula [33].

(a) The Pentagon Code. (b) The Hexagon State.

Figure 28: Graphical representations [57] of the HaPPY tensor networks. In the back-
ground the tessellation of the two-dimensional hyperbolic space that is an
AdSj3 time-slice is shown. In both the code and the state each single tile,
which is of AdS-radius size, contains exactly one tensor. The pentagon code
has a free bulk leg at each tensor, shown by a red dot.

For a tensor network with quantum error correcting properties [45, 57|, consider

a uniform tiling of an AdS3 time-slice by pentagons, as can be seen in figure 28a.

Then place a perfect tensor with six legs at the center of each pentagon so that
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the legs are connected to (exactly) the middle of the sides of each pentagon. In
this set-up, each tensor has one open leg in the bulk, the other five are contracted
with legs of neighboring tensors. The degrees of freedom of the free legs, i.e. those
at the boundary and the uncontracted bulk legs, are identified [57, 58] with spins.
The boundary can thus be seen as a complicated spin chain.

Each of the tensors in this tessellation [62], acts as a linear and isometric map
encoding the information of one bulk spin into the five spins or contracted legs.
This way, a quantum error correcting code can be formed. Because each bulk
spin is encoded into the remaining block of five legs (contracted or not), it is
protected |57, 135] against the erasure of any two spins related to those five legs
of that tensor. The AdS-Rindler reconstruction can be achieved [45, 57| here, by
pushing any local bulk operator to the boundary, via equation (128). Once more,
this kind of reconstruction on the boundary is not unique.

Figure 29: A graphical representation [57] of the cut ¢ and accompanying decomposition
into two tensors, P and Q. The boundary legs a and b determine the degrees
of freedom in the region A and the complementary region A¢. The i’s indicate
the legs that are cut.

To obtain a tensor network which can carry a discrete version of Ryu-Takayanagi
[33, 57/, the two-dimensional AdS-slice is tessellated with hexagons and six-legged
perfect tensors are placed at the center of each hexagon. In this set-up, all in-
ternal legs of the perfect tensors are contracted with the neighboring tensors at
(exactly) the middle of the edges of the hexagons and no free bulk legs remain.
The collection of spins at the outer-edge forms a state, which is known [57] as
the holographic hexagon state.

Because HaPPY tensor networks [57]| are defined upon two-dimensional slices of
AdS, the area of 4 is just a length. The validity of the Ryu-Takayanagi formula
has been discussed explicitly in this dimensionality, earlier in this chapter. In the
discrete setting of tensor networks |57], this length is interpreted as the number
of contracted legs that are "cut" by ya. Due to this cut, the tensor network can
be deconstructed into two large tensors, P and Q as shown in figure (29).

The two tensors are contracted along the cut c; the number of legs contracted
between them, denoted as |c|, is the formal definition [57] of the length of the
cut. If the cut is the Ryu-Takayanagi geodesic 4, then the connected boundary
region A of the hexagonal tensor network can be identified as the set of boundary
legs of P. The other set of boundary legs then forms the complementary region
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of A. Due to this decomposition [57] into P and Q, the holographic state |¢)
defined by the hexagonal HaPPY tensor network may be re-expressed as

) = Y [ab) PaiQui = ) |P) 4 © Qi) ac , (129)
a,b,i i

where a and b run, respectively, over the entire bases for A and A¢, and where

i can take all possible values of the legs that were cut by c. The corresponding

density matrix on A is thus given [34, 57| by

oa =Y (Qir|Qi)|P:) (Pl . (130)

il

The rank of p4 is no more than the number of terms that the sum over i contains.

Now, it also known [34, 57| that density matrices of maximally entangled systems,
like the Bell pair in equation (109), are proportional to the identity and have an
entanglement entropy equal to the log of its rank, so that an upper bound on the
entanglement entropy can be given by

S[A] <log(v)|c|, (131)

where v is the number of values each individual index, i.e. a tensor leg, can take
and where c is used to obtain the lowest of upper bounds. In general, it is not
necessary nor certain that |P;) and |Q;) are orthogonal sets. However, if the
tensors P and Q are isometric tensors from i to a and b respectively, then P and
Q form a maximally entangled state and the above formula, equation 131, reverts
to an equality, i.e.

S[A] = log(v)]cl, (132)

which would be a discrete lattice version of the Ryu-Takayanagi formula up to
normalization. The remaining question is whether or not the tensors P and Q in
the hexagonal HaPPY tensor network are indeed isometric. It turns out [57| that
for a non-positively curved, simply-connected planar tensor network of perfect
tensors it can be shown, using graph theory and quantum circuit techniques
[57, 155, 156], that P and Q are isometric. The discrete Ryu-Takayanagi formula,
equation (132), is thus valid [33, 57] for the hexagonal HaPPY tensor network.

4.5.3 The Greedy Algorithm

The axiomatization of the discrete Ryu-Takayanagi formula [33, 57] can be expan-
ded even further on the hexagonal tensor network. An algorithm |57, 155, 156] has
been devised that determines a discrete geodesic, 7%, called the greedy geodesic,
that fulfills the role of ¥ up to the resolution of the tensor network. The only in-
put of the algorithm, which is fittingly called the greedy algorithm [57, 157, 158],
is the boundary region A of interest. The algorithm starts from the region A and

65



66

INCORPORATING QUANTUM INFORMATION

Figure 30: An adapted graphical representation [57] of the greedy algorithm in action.
The first layer, shown in red, is nothing more than the given boundary region.
The second and third layer, shown respectively in blue and green, are obtained
by including all tensors which have at least half of their legs contracted with
a tensor inside the previously defined region.

aims to expand this region by including all perfect tensors which have at least
half of their legs contracted with a tensor inside the previously defined region.

For the hexagonal tensor network, a.k.a. the holographic hexagon state, any
tensor that has three legs or more connected to the region "inside" the greedy
algorithm, is absorbed into that region. The algorithm keeps repeating this pro-
cess iteratively, until no further inclusions can be made. It has been proven
[33, 57, 155, 157] that in this setting, the edge of the region absorbed by greedy
algorithm, i.e. 7y}, is indeed the correct cut for the discrete Ryu-Takayanagi for-
mula on the boundary region A. Practically, this means that the number of cuts
made by 7% can be counted to obtain the entanglement entropy S[A].

4.6 CONCLUSION

From the origin of information theory in Shannon’s mathematical theory of com-
munication, to the development of the discrete Ryu-Takayanagi formula on tensor
networks, this chapter has been covering the applications of quantum informa-
tion to holography. Special interest was given to quantum error correction and
entanglement entropy but it is important to note that the literature has (recently)
advanced beyond the discussions here, both in scope and complication.

Within the literature, advanced ideas about quantum error correction proper-
ties, specifically close to the boundary, have been developed. Nonetheless, the
main conclusions made here remain valid. The AdS-Rindler reconstruction in dif-
ferent wedges still produces different operators with the same action on a low
energy subspace that is increasingly better protected against boundary erasures
as it moves deeper into the bulk. The situation close to the boundary can, how-
ever, be better described by an algebra [45, 135, 159] of quantum error correcting
operators.



4.6 CONCLUSION

The direction further developed in this dissertation is that of entanglement
entropy and its connection to tensor networks. In principle it should be possible
to expand the discussion in this chapter to higher-dimensional situations |57, 141,
144, 145]. In this dissertation the AdS3/CFT), case will be studied. The underlying
reason for this choice is that there are convenient ways in 2-+1-dimensional gravity
to study other spacetimes [41, 42, 51| than pure AdS. A challenge of current
interest in this regard is to expand the HaPPy tensor networks to these less
trivial spacetimes.

Additionally, gravity in three dimensions is relatively less complicated [50—
52| than higher-dimensional gravity and hence more attention can be given to
the quantum informational aspects. It has, for instance, been shown that there
are non-minimal but extremal curves, which probe regions of spacetimes in 2+ 1-
dimensional gravity [41, 42] that cannot accessed via Ryu-Takayanagi. The length
of these curves correspond [42, 43] to a new quantum information quantity, called
entwinement. It is an open question whether or not this situation can be trans-
lated to the HaPPY tensor networks. The aim of the following two chapters is to
bring entwinement to the HaPPY tensor networks.
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5.1 INTRODUCTION

CFT data can be used to probe the bulk spacetime of AdS/CFT, as seen in the
previous chapters. Specifically, the spatial entanglement entropy of a boundary re-
gion is known to give rise to a minimal surface in the bulk via the Ryu-Takayanagi
formula. One could hence hope to reconstruct the local geometry in the bulk using
boundary field theory information. For this approach to work completely how-
ever, the union of all minimal surfaces that can be obtained via Ryu-Takayanagi
must cover all of the bulk spacetime.

It turns out [41] that in the case of empty AdS, the spacetime can be entirely
covered by Ryu-Takayanagi minimal surfaces. However, the biggest possible min-
imal surfaces, those that are anchored on the endpoints of a boundary interval
half the size of the boundary, must be included or otherwise the central region
of empty AdS would not be covered. Through study of 2 + 1-dimensional gravity
[50, 51] a systematic set of examples [41, 42| in which it is not possible to find a
full covering with Ryu-Takayanagi minimal surfaces can be obtained.

The central region of these spacetimes that cannot be probed is known as the
entanglement shadow [41]. In recent developments, a novel holographic quantum
informational measure on the boundary has been introduced that corresponds to
non-minimal but extremal bulk curves. This quantity, called entwinement [41, 43],
probes the entanglement shadow via these new curves.

5.2 2+ 1-DIMENSIONAL GRAVITY

Three-dimensional general relativity, a.k.a. 2 + 1-dimensional gravity, has signi-
ficantly simpler dynamics [50, 51, 160| than the four-dimensional case [89, o]
due to the complete lack of local degrees of freedom in this theory. Yet three-
dimensional gravity is an interesting gravitational model to investigate various as-
pects of holography. For instance, black hole solutions can be found [53, 161, 162]
in three-dimensional gravity if given a negative cosmological constant. This al-
lows for the study of comparatively simple black hole solutions in the AdS/CFT
correspondence.

The conjecture of the AdS/CFT correspondence facilitates the formulation
of AdS3; quantum gravity in terms of its corresponding two-dimensional con-
formal field theory at the boundary. However, a strong relationship between
AdS3 and CFT;, had already been found before the birth of the holographic

correspondence. Brown and Henneaux [143], showed that the asymptotic sym-
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metry group of asymptotically AdS; spacetimes is generated by the algebra of
local two-dimensional conformal transformations. This insight yielded the Brown-
Henneaux relationship that was used in the previous chapter, equation (120), and
which might be seen [51] as a precursor of the AdS/CFT correspondence. There-
fore, AdS3/CFT; is seen as a natural and useful laboratory to test holography.

5.2.1 Negatively Curved Gravity in Three Dimensions

To understand entwinement in AdSz;/CFTjy it is sensible to first (very) briefly
study three-dimensional gravity. The three-dimensional Einstein-Hilbert action,
in accordance with the GR discussion from the first chapter, is given [51] by

5= /d%M (21162(12—2/\)> , (133)

where A is the cosmological constant which here is chosen to be A = _RXEIS'
The equations of motion following from this action (after variation with respect
to the metric) are the vacuum Einstein’s equations with a negative cosmological
constant,

1
Ry = 58uwR = Aguw = 0. (134)

It can be shown [50, 51, 160| that any three-dimensional solution of the above
equation with A < 0 is locally AdSs.

5.2.2 Gravity as a Topological Theory

To support the claim that three-dimensional gravity lacks any dynamical degrees
of freedom, a simple counting exercise is useful [51]. The metric tensor g, of
D dimensional spacetime has D(D + 1)/2 components. D of those components
can always be removed due diffeomorphism invariance [51, 162]. In addition, an-
other D components of the metric tensor act as Lagrange multipliers |51, 162]
in the Einstein-Hilbert action, e.g. equation (133), so that they do not count
as degrees of freedom. The total remaining number of degrees of freedom in a
D-dimenensional Einstein gravity is thus

D(D+1 D? — 3D
(D+1) _pp_ (D2-3D)

In the case of three-dimensional gravity, the amount of dynamical degrees of
freedom is thus zero. At a first glance, this complete absence of local degrees
of freedom might seem to indicate [50, 51| that three-dimensional gravity is es-
sentially sterile as there are no gravitational waves and hence no graviton in

(135)

this theory of gravity. This apparent lack of complexity stands in stark contrast
with the earlier claim that a black hole can be contained in negatively curved
three-dimensional gravity.
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The reason that three-dimensional gravity still harbors interesting physics,
even though each of its solution is locally equivalent to a maximally symmet-
ric spacetime with constant curvature, is that [50, 51, 162] different solutions
of three-dimensional gravity with a negative cosmological constant differ from
each other by global properties. This opens up the possibility |50, 51] of having
non-trivial causal structures and thus allows for the existence of black hole solu-
tions. To show that the theory of three-dimensional gravity is purely topological,
it can be reformulated as a Chern-Simons gauge theory [50, 163]. This is shown
explicitly in the appendices.

5.2.3 BTZ Black Holes

As claimed earlier, three-dimensional gravity contains black hole solutions. In
the early 1990’s, Banados, Teitelboim and Zanelli (BTZ) showed [161] that 2 + 1-
dimensional gravity can describe a black hole that seems to be somewhat phys-
ically similar to a Kerr black hole. The metric [51, 161] of a BTZ black hole of
mass M and angular momentum J is

ds? = (N(r))?dt? — (N(r)) 2 dr? — > (dg + N?(r)dt)*, (136)
with
2 16G2]2 4GJ

Clearly, this solution of three-dimensional gravity is purely dependent on the
parameters M and | which means [164] that, just like the Kerr black hole, it
has no hair. Furthermore, it was shown in the literature that a BTZ black hole
can arise from gravitational collapse. Two important differences [53] with a Kerr
black hole are however, that the BTZ black hole is asymptotically AdS instead of
being asymptotically flat and that it has no coordinate singularity at the origin.
Nevertheless, the BTZ black hole has a causal structure |53, 164] with an inner
and an outer horizon just like the Kerr black hole. When 0 <| J |< MRags, the
inner and outer horizon are located at r_ and ry which are defined [51] by

2
A =4GMRi4 | 1+ \/1 - <MRIAdS> : (138)

Outside this parameter domain [51], i.e. when | J [> MRagqs or M < 0, both
the horizons are removed and the spacetime describes a conical defect (or excess)
with a naked conical singularity. When | = 0 and M = —1/(8G) the singularity
also disappears, leaving a spacetime which is exactly AdSs. The overview [51] of
the spectrum of the BTZ metric in function of | and M is shown in figure 31.

BTZ black holes have been studied extensively |51, 164, 165] and show up in
many domains of modern theoretical physics. In this dissertation however, mainly
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Figure 31: Visual representation [51] of the spectrum of the BTZ metric. BTZ black holes
(grey) exist for M > 0, |J| < MRags. The vacuum state, i.e. AdS3, resides at
M = —1/(8G), ] = 0. The other colored regions and denote conical defects
(blue) and conical excesses (orange).

the orbifold aspect of BTZ black holes will be necessary. Finally, for future use
it is noted that the mass and angular momentum of a BTZ black hole can be
described [51, 164] in function of r4,

2 2
re +ro rer—
= —— & = — 1
8GR2 4GR rgs (139)

5.2.4 Orbifolds

As discussed before, any solution of gravity with negative curvature in three
dimensions is locally Anti-de Sitter spacetime. So every patch of a spacetime in
the BTZ metric spectrum, like the BTZ black hole, is isometric to some part of
AdSs. Specifically [164, 166|, any (vacuum) spacetime with negative curvature
in three-dimensional gravity can be constructed by patching together bits and
pieces of (empty) anti-de-Sitter spacetime by identification under SO(2,2), the
isometry group of AdSs, or equivalently (SL(2,R) x SL(2,R)) /Z,.

The fact that SO(2,2) is the isometry group of AdSz can be distilled [166]

This from the definition of AdS3 [61, 62| in four-dimensional flat space with two time
four-dimensional directions
hyperbole is
conserved under —x% — x% + x% + x% = RidS . (140)

50(2,2) rotations.
Henneaux, Banados, Teitelboim and Zanelli [53] made a thorough, explicit and

systematic overview of the isometries of AdS; that are used to obtain the differ-
ent spacetimes of the BTZ spectrum. For the purposes of this dissertation, the
analysis of isometries is more convenient in the SL(2,R) group.

It turns out [53, 166, 167| that SL(2,R) contains three different types of ele-
ments g: the hyperbolic (Tr(g) > 2) elements which act as squeeze mappings, the
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elliptic (Tr(g) < 2) elements which act as rotations and the parabolic (Tr(g) = 2)
elements which act as shear mappings. In addition, it can be shown [51, 53, 166]
that each spacetime in the BTZ spectrum is a quotient space obtained by mak-
ing identifications of regions in AdSs, which in this construction is known as the
covering space, under the orbit of the action of these elements of SL(2,R).

The elements g in the hyperbolic conjugacy class provide the identifications
[53] of AdS; regions that give a massive BTZ black hole. Elliptic elements give
identifications [53, 166] which yield the conical defects (or excesses) and the
parabolic elements lead to massless BTZ black holes. Massless BTZ black holes
are a limiting case [169] of both the elliptic and hyperbolic identifications but
the limits taken from hyperbolic and the elliptic conjugacy classes are different.
Because these spacetimes are all quotient spaces of the covering spacetime, they
are known as orbifolds [167, 170].

5.3 ENTWINEMENT OF ORBIFOLDS

The orbifold spacetimes that follow from empty AdSs by a non-trivial group
action contain an entanglement shadow [41]. For instance, it has been shown [41—
43, 171], see figure 32, that spatial slices of BTZ black holes have an entanglement
shadow with a thickness of approximately AdS scale surrounding its (outer) ho-
rizon. Not only does this area of shadow hinder the attempt to reconstruct the
geometry from the boundary, it also reflects the obscure nature |12, 13, 63] of the
AdS/CFT correspondence in bulk regions of less than AdS-size.

As briefly explained in the introduction of this dissertation, N? conformal field
degrees of freedom at the boundary are encoded into the bulk physics of a region
of AdS-size via the AdS/CFT correspondence. The way in which these N? degrees
of freedom capture quantum gravity in these regions is yet unknown |12, 13, 63].
Probing the entanglement shadow might also be an advance in the attempt to
understand sub-AdS locality. In the next chapter, the question of whether or
not there is an actual link between sub-AdS locality and entwinement will be
explored.

This all motivates the idea that a measure [42, 43| of the entanglement of
internal degrees of freedom of the boundary CEF'T might correspond to a bulk
curve, or surface in higher dimensions, that probes the entanglement shadow.
In addition, internal degrees of freedom are known to have comparatively small
energy gaps and are thus expected [41, 42| to capture the deep IR behavior
of the (boundary) field theory. Via AdS/CFT, the IR physics of the boundary
CF'T is associated to the deep interior of the bulk spacetime, exactly where the
entanglement shadow lives.
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Figure 32: Visual representation [171] of a family of geodesics around a BTZ black hole.
The horizon of the BTZ black hole (thick, dark red) is shown at the center of
the picture. The other (rainbow) colored lines, show how a geodesic, i.e. the
minimal surface on two-dimensional disk, gets deformed as its anchor-points
on the boundary are moved further and further along the boundary. If this
process were to be repeated for every spatial interval on the boundary, a bulk
region of AdS-size thickness along the horizon would remain that is never
probed by the geodesics. This region is the entanglement shadow of a spatial
slice of a BTZ black hole. Note that for aesthetic visualization reasons, the
radial coordinate is compactified to p = tan~!(r).

5.3.1 Introducing Entwinement

The arguments in the previous section and the success of the Ryu-Takayanagi
formula strongly suggest that to probe inside the entanglement shadows some
form of entanglement measure for internal degrees of freedom of the CFT has to
be developed. Naively, one could try to calculate the reduced density matrix for
a fraction of the Hilbert space of the CFT [42] and then obtain the entanglement
entropy in the usual way. The problem with this approach is that the subset of the
Hilbert space may not, in general [172—174], be gauge invariant. A straightforward
solution [42] to this technical issue is to embed the Hilbert space into a larger
theory, compute entanglement entropy in that theory and then sum over different
gauge copies to get a gauge invariant quantity. This newly obtained quantum
informational variable is known in the literature as entwinement.

Just like spatial entanglement entropy can be related to minimal bulk surfaces
via Ryu-Takayanagi [33], entwinement turns out to have an interpretation [42] in
the bulk theory in terms of extremal (but non-minimal) surfaces. For instance, it
has been shown [42, 43| that entwinement in a two-dimensional conformal field
theory is dual to the length of non-minimal curves in a slice of a conical defect.
Specifically, the covering space AdS3 and its boundary CFT were used to play the
role of embedding theory. Here, entwinement is defined as the quantity equal to
the length of the Ryu-Takayanagi geodesics originating from the covering space
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AdSs, after the application of the orbifold identifications that produce the conical
defect.

5.3.2  Winding around Conical Defects

A conical defect can be obtained [42] from (global) AdSs by identification under
Z,,. Recall that the global AdS3 coordinates (in the mostly minus signature) are

N N -1
i (14 Nar— (141 72 — Pdf? (141)
Rids Rids '

The effect of the Z,, identification is remarkably simple; the metric is retained
but the angular coordinate @ is prescribed to become periodic under 27t/n. To
obtain [42] a coordinate system where the angular coordinate runs from 0 to 27,
the previous metric can be rescaled by

0=nd & r=%n & t=ni, (142)

so that the new metric,

-1
1 r? 1 r2
), ’ 2 240
ds? = (nz_Rz )dt — (712—R2> dr® —r<de-, (143)

has a spacetime singularity at r = 0. Geodesics on a conical defect time-slice can
be found by taking geodesics in AdSs, which given by

72 4+ R3 g

tan?(0) = (144)

where « is the opening angle, and making the relevant Z, identification so that
according to equation (142),

tan? 0\ n%r? tan? (%) — Rids
an-{ — | = 2,2 2 :
nr +RAdS

(145)

Most of the resulting geodesics wind [42] around the central singularity of the
conical defect, as can be seen in figure 33, and are thus extremal but non-minimal
curves. These curves are called "long" geodesics, the conventional geodesics,
which do not take the long way around the conical defect, are called the "short"
geodesics.

The length £(a, ¢) of the geodesics (both long and short) in a conical defect is
given [42| by

L(a,l) =2Raqgslog [22?;15 sin<0( 257%)] , (146)

7
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(a) The AdSj3 covering space. (b) The conical defect.

Figure 33: Graphical representation [42] of geodesics on the conical defect. The time-
slice of the AdS3 covering space picture is shown on the left, the conical
defect AdS3/Z,, is shown on the right. In this case n = 5. The geometry of
spatial geodesics in the conical defect descends from geodesics in the covering
space as shown on the left. The covering space picture also shows the different
sections of the AdS3 time-slice that are identified under Zs.

where a is the opening angle of the corresponding geodesic on the covering space
and where £ counts the number of windings. The factor €y is a gravitational
IR cut-off [33], reminiscent of the UV cut-off in spatial entanglement entropy
[34] and which deals with the tails of the geodesics which would otherwise be of
infinite length as they near the boundary.

As can be inferred from figure 33, there are n different geodesics between
each two (different) boundary points of the conical defect space. One of them is
minimal and does not wind around the singularity. It is this minimal geodesic
that calculates the spatial entanglement entropy of the boundary interval, upon
which it is anchored, by use of the [33] the Ryu-Takayanagi formula. The other
geodesics have windings and/or penetrate the entanglement shadow and their
length is postulated to calculate this new holographic boundary quantity called
entwinement [42].

5.3.3 A Covering Space Picture for Massive BTZ’s

An obvious question in this story is whether or not the above described approach
can be extended to the BTZ black holes. A massless BTZ can be obtained [43,
166, 169] (to some extent) by taking n — oo in the conical defect metric. As
a consequence [42] the massless BTZ spacetime contains spatial geodesics that
wrap around the black hole horizon infinitely many times, which does not happen
around the conical defect singularity.

Massive BTZ black holes, which are obtained from orbifolding AdS3 by a hyper-
bolic element of SL(2,R), present a more serious challenge for entwinement. The
reason for this is that necessary hyperbolic identifications of the covering space
AdS3 are equivalent [42, 61, 62] to Lorentz boosts in the flat embedding space-
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Figure 34: A numerical simulation of the effect of boosts on points on a time-slice of the
AdSs3 covering space. In blue, a uniform random distribution of points onto
the fundamental domain is shown. In red, the effect of one single boost on
the points in the fundamental domain is shown. In green the effect of two
successive boosts is shown. Without the limitations of time and computer
memory, this process could be repeated indefinitely. Obviously, the boost
could also have happened in the other direction, this would provide the same
picture as above but mirrored with respect to the vertical axis. The code
listing for this figure can be found in the appendices.

time with two time dimensions (see equation 140). In general, a Lorentz boost
mixes space and time non-trivially, so that a constant time-slice in the BTZ black
hole geometry does not necessarily correspond [42] to a constant time-slice of the
covering AdS3 spacetime.

This means that for generic, massive BTZ black hole state, it is impossible to
apply the covering space definition of entwinement on spatial slices. Even though
there is a subclass of massive BTZs in which the covering space approach can be
applied, as will be shown later on in this chapter, there is still another challenge
present. The action of a boost on the flat embedding spacetime of AdS; has a
non-compact orbit [42]. This implies that the AdS; geometry contains infinitely
many copies of the massive BTZ geometry.

This dissertation shows the existence of a covering space picture of entwinement
for non-rotating but massive BTZ black holes. The reason for this is that the
action of Lorentz boosts on a t = 0 time-slice of AdS; (embedded in that four-
dimensional flat spactime) can be used to to map all points of AdS; into a
fundamental domain that is purely spatial [61, 62] and entirely part of that
original time-slice of AdS;. A numerical simulation of the effect of these Lorentz
boosts on a random sets of points in a slice of AdS3 is shown in figure 34.

To see why t = 0 time-slices of AdS3; are preserved under orbifolding in the
case of a massive but non-rotating BTZ black hole geometry, it is convenient to
start from the metric for a non-rotating, massive BTZ black hole in the Euclidean
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covering space fundamental domain
p 201

1, in blue

angle geodesic: -B0°
BTZ radius (r,): 0.1592

Figure 35: A numerical visualization of the covering space picture for a time-slice of
a massive BTZ black hole is shown on the left. On the right, the effect of
the successive combination of reflections is shown, i.e. all curves are brought
back to the fundamental domain. On the bottom left, the resulting curves
are shown on BTZ black hole time-slice. For the covering space picture, the
coordinates (y1,y2) were used. The black hole horizon is shown in solid blue
on lower left picture. The code listing for this picture can be found in the
appendices.

signature (after multiplying it with a factor —1 so that a negative definite metric
is evaded) which conform [62] to equation (136) is

2 2 RZ
ds? — (r 5 r+)dt2 +— AdS__dr? + r2d6>. (147)
Rijgs (r2—r)

Note that equation (139) was used to write the metric in function of 4 and r_.
Applying the following coordinate transformations [175],

1/2 1/2
o r?—r% exp r(04t) . r2—12 exp 4 () ,
7’2 ZRAdS 1’2 ZRAdS
(148)

to the Euclidean metric of the massive non-rotating BTZ black hole, reduces the
metric to

RZ
ds? = ?Tds(daﬁdzf +dz?), (149)

where due to the periodicity of 9,

2 2
w* = exp <47[;> w*, zX=exp <47,;> z, (150)

with B the inverse temperature of the black hole. This relatively simple expression
for the non-rotating, massive BTZ can be translated [62] to the four-dimensional
embedding of AdSj3 via the following set of transformations,

z RE . +whw™ R -
xo=—2<”AdSzz> & m=m@t ), Gsy)
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z (Rigs —whw™) Rads , + _
x2:2<1— 2 & X3 = = (w" —w™). (152)
In this embedding space, the hyperbolic elements of SL(2,R) are equivalent to
Lorentz boosts. For the non-rotating, massive BTZ geometry, the identifications
of AdSj are achieved [61, 62] by Lorentz boosts in the xp-xp-plane of the embed-
ding space given by

xy = xgcosh() + xzsinh(y) & x5 = xpcosh(y) + xgsinh(77), (153)

where 77 = 472/ B. Because the rest of this dissertation will focus on the t = 0
time-slice of AdSz (which in this case remains a time-slice after orbifolding),
x3 = 0 can be assumed for the remainder of this text.

As it happens [61, 62], the Lorentz boosts in the flat four-dimensional em-
bedding space can be reconstructed by a sequence of successive reflections un-
der hyperplanes P; and P, with corresponding normals n; = (0,0,1,0) and
np = (cosh(%),O, sinh(%),O). To see this recall from elementary mathematics
that the effect [176, 177] of the reflection of a point X = (xo, x1,x2,x3) with
respect to a hyperplane with normal n is

X' =X—-2(n-X)n, (154)

where the dot indicates in the inner product (in this case in the flat four-dimensional
embedding space). The transformation induced by the combined reflections under
P; and P; is simply a Lorentz boost along the xg — x2-plane, i.e.

{ xly = xg cosh(17) + xp sinh(7), (155)

x} = x5 cosh(n) + xo sinh(7).

Knowing that the orbifold transformations needed to obtain a massive, non-
rotating BTZ black hole from the covering space, are given by reflecting across
two hyperplanes P; and P, in the embedding space of AdSs, allows for a covering
space picture of M # 0, | = 0 BTZ black hole entwinement. Once more, the
approach is to take a geodesic on the t = 0 AdS3 time-slice and select the parts
of the curve that lie outside the fundamental domain.

These sections then get mirrored across P; and P, until all parts of the geodesic
would lie in the fundamental domain. A caveat here is that due to the fact that
the orbit of the Lorentz boosts is, in fact, not finite, the amount of reflections
used in this process is not bounded from above.

Practically, it is most convenient to introduce the Poincare unit disk coordin-
ates (y1,12), which conformal coordinates subject to y2 +y3 < 1. The Poincare
disk coordinates are obtained from the embedding space via

X2 X1

& = . 6
1T % 2= T (156)

=
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These coordinates are most useful to determine whether or not a part of a geodesic
lies inside or outside of the fundamental domain. Calculating the reflections,
happens most naturally in the embedding coordinates. An example of the effects
of the hyperbolic identifications of AdSs on a geodesic, obtained in this way,
is shown in figure 35. It shows that geodesics that have parts that lie outside
the fundamental domain produce curves that are wound up around the BTZ
singularity after the orbifold identifications.

5.4 ENTWINEMENT OF DISCRETELY GAUGED THEORIES

Even though the previous sections provided a conceptual and geometrical notion
of what entwinement is, exactly defining entwinement has turned out to be a
challenging question. Currently, a complete mathematical understanding of en-
twinement in terms of a Von Neumann entropy, is still lacking. Recently however
[43] progress has been made in this endeavor; for instance, Balasubramanian,
Bernamonti, Craps, De Jonckheere and Galli have developed an exact expression
for the entwinement of discrete gauge theories.

In their approach [43], the replica trick is applied to define entwinement in
symmetric product orbifold CFTs [178]. As an explicit example, the D1-Dg CFT
was used by them to calculate entwinement and compare it to the length of
winding geodesics in conical defects and massless BTZ black holes. In this section,
the concepts of symmetric product orbifold CFTs, entwinement, the replica trick
and the D1-Dg CFT is explored.

5.4.1 Defining Entwinement

To understand entwinement in discretely gauged theories, recall that in the replica
trick (Euclidean) path integrals are taken over multi-sheeted Riemann surfaces
to calculate the entanglement entropy of the CF'T region that links together the
different sheets. Equivalently [43, 179], states formed by Euclidean path integrals
can be calculated via correlation functions of so-called twist operators. By defin-
ition, these twist operators link together the different copies of the CFT that
normally arise in the replica trick. For discretely gauged theories entwinement is
defined in terms of correlation functions of these twist operators.

To apply this approach concretely, consider a CFT [43, 178] with as its target
space MN /Sy. This CFT contains N groups of fields, where each group of fields is
a coordinate set on one of the N copies of the smooth manifold M. In this kind of
CFT, known as a symmetric product orbifold CFT, each possible configuration
of the fields is identified under the Sy permutations of these N sets of fields.
By gauge fixing the Sy identification, the fields can be interpreted as changing
continuously from point to point so that [43], a continuous (closed) string, not
to be confused with a string from string theory, lives in each M of MV.



54 ENTWINEMENT OF DISCRETELY GAUGED THEORIES

—

Figure 36: A visual representation [43] of the strings in a symmetric product orbifold
CFT [178]. Here, the same twisted sector is shown twice. The number of
strands shown here is seven, there are two strings that have two windings and
one string that three windings. On the left, the sections of the strands that
would correspond to the spatial region of conventional entanglement entropy
are shown in blue. On the right, the region of the strands of the entwinement
of one and half strings is shown. In the latter case, a symmetrization under
Sy is still necessary to correctly define entwinement.

A symmetric product orbifold CFT contains [43] "twisted sectors" in which
the embedded strings are periodic up to permutations. Inspired by the group
structure of Sy, each twisted sector is labeled by a conjugacy class. Each of these
conjugacy classes is characterized by the lengths of its permutation cycles. The
lengths m of the permutation cycles, of which there are N, must fulfill [43] the
requirement that ), N,m = N. Visually, each of these cycles can be seen as a
long string winding m times. Each of these windings can be imagined to be a
shorter piece of string, which for clarity [43] is referred to as a "strand".

Intuitively [42, 43|, entwinement captures the entanglement of intervals that
extend over some but not all strands. The conventional spatial entanglement
entropy is equal to the entwinement of a union of identical intervals on every
strand. Due to the identification under Sy, the entwinement of an interval of
a specific individual string cannot be defined, but it is well defined to consider
the entwinement of a specific number of strings as long as they themselves are
unspecified.

Recall from the previous chapter that the entanglement entropy of an interval
A, as defined in equation (124), can easily be expressed in function of the Rényi
entropies Sy, as

Sy =1im§,, (157)
n—1

where the Rényi entropies are defined by

1
1—n

S, = Tr (%) - (158)
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Figure 37: A visual representation [43] of the calculation of a reduced density matrix
p(¢,¢’) of a two-dimensional CFT in the framework of radial quantization.
The path integral is taken from the origin (which corresponds to t = —o0) to
radial infinity. The boundary conditions at the inside and the outside of the
unit circle are respectively ¢ and ¢’. Outside of the interval arc [0, a] (shown
in blue) these boundary conditions are put equal to one another.

Furthermore, it is convenient here [43] to work in the framework of radial quantiz-
ation, where, in two-dimensional case, equal-time slices are circles of fixed radius.
A pure state can be created in this kind of theory by acting with an operator o at
the origin. The corresponding density matrix p(¢,¢’) is then obtained [43, 180]
by inserting ¢ at the origin and at infinity and imposing boundary conditions ¢
and ¢’ at the inside and the outside of the unit circle.

The reduced density matrix p4 for an interval arc A = [0, «] on the unit circle
is calculated [43] by tracing over, i.e. taking the path integral from 0 to (radial)
infinity, the remainder of the circle. To calculate [179, 181] terms of the form
Tr(p’), which are essential to calculate Rényi entropies, the two-dimensional
CFT plane (and the state it is in) are replicated and glued together at the cut
[0, a].

Pz

Figure 38: A visual representation [43] of the replica trick for a two-dimensional CFT
in the framework of radial quantization. On the left, approach with the n-
sheeted Riemann surface is shown. On the right the alternative but equivalent
approach using Rényi twist operators is shown. Once more, the radial interval
[0, ] on the unit circle is shown in blue.

Just as in the regular case, the geometry resulting from the replica trick in
radial quantization is an n-sheeted Riemann surface. To obtain the Rényi entropy,
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a FEuclidean path integral is taken over this surface as was explained in the
previous paragraph. Equivalently [43, 179], see figure 38, the Tr(p’}) terms can
be calculated on a single sheet of the cyclic orbifold of the two-dimensional CFT,
as the correlation function of Rényi twist operators (™). A Rényi twist operator
[43, 179] grafts together n copies of the CFT (cyclically) so that when a path
integral moves in between two Rényi twist, it enters the next copy of the CFT.
Recall that the kind of CFTs regarded here, called symmetric product orbifold
CFTs, are of the form MN /Sy and contain twisted sectors. To deal with these
twisted sectors, the Rényi twist operators can be written [43] in function of

elementary twists Zl(n) by

=0 =TT=". (159)

(n)

Each of these elementary twists 2;" is defined so that it only glues together the
n-replicas of the i-th strand. Each of the elementary twists is chosen [43] in the
fundamental representation of Sy so that the action of ¢ € Sy on them is given
by

g =] == (160)
Finally, the entwinement of interval [0, « + 27t¢], where ¢ # 0 indicates that the
interval is taken over more than one strand, can be defined [43]| as a bi-local,

gauge-invariant quantity in terms of the elementary twists ZZ(”) as

s vc+27r€
NI gesy
where as usual only the holomorphic coordinate is used. The operator ign) is

defined [43] so that its action is opposite to that of ZE"). When £ is larger than the
number of strands in a long string it means [43] that the entwinement calculates
the entanglement between the entirety of the long string and the rest of the
system.

5.5 A LIGHTNING INTRODUCTION TO THE D1-Dj CFT

As a practical example of a symmetric orbifold CFT [178] and entwinement [43],
the long strings in the D1-Dg CFT [179, 182| will be discussed. To obtain [42, 182]
this CFT, start from type IIB (super)string theory and compactify the theory on
a S x T* spacetime, where the T denotes a torus. Then, regard Nj Di-branes
wrapping around S' and N5 Ds-branes wrapping around S x T#. The low energy
limit description of this theory is known as the D1-Dg CFT. In the strong coupling
regime the D1-D5 CFT is exactly dual [42, 43] to Type IIB supergravity on
AdS3 x S3 x T

35
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In the fully decoupled regime of the D1-Dg CF'T, at its so-called orbifold point,
the dynamics of the theory reduces [42, 43| to that of a free (supersymmetric)
sigma model with (T*)N /Sy as target space. For this regime of the D1-D5 CFT
[43], N = N1N5 and central charge ¢ is equal to 6N. The D1-Dg CFT is thus a
symmetric orbifold CFT on N copies of M = T* which are permutated by Sy.

5.5.1  Conical Defects, Once More

In the strong coupling regime of the D1-Dg CFT |42, 43, 183], there exist large
N states in the D1-Dg CFT that are dual to conical defects and massless BTZ
black holes in the bulk. For instance [43], the CFT state dual to the Z,, conical
defects is

) = [0 ()] [0) (162)

where each 0;,(0) acts on a different subset of the N different set of CFT fields.
By inserting this state into equation (161), and working out the significantly non-
trivial correlation function that follows from it, it can be shown [43, 182], using
equation (146) for L(a, ), that

. 2Rpgs . o+ 27l . L(D&,g)
E(zx,ﬁ)_Zlog[ cuy sm< 5 >] = Rag (163)

So it turns out [43| that entwinement, as defined in equation (161), which can
only be calculated at the orbifold point of the D1-Dg CF'T, corresponds to the
gravitational covering space interpretation of entwinement which is valid at strong
coupling. This is somewhat surprising, but it is known [43| from the literature
[184, 185] that certain "protected" quantities in the D1-Dg CFT are the same
when calculated at strong and weak coupling. Whether or not entwinement is
similarly protected under renormalization flow is unclear.

5.5.2 Relationship with Entanglement Entropy

For self-consistency [43], the entwinement of the same interval [0,a] on all the
different strands of a CF'T, as shown in figure 36, should be equal to the conven-
tional spatial entanglement entropy of the region [0,«]. According to the Ryu-
Takayanagi formula [33, 43|, the entwinement of this situation should simply
be equal to the length of geodesics in AdSs. In the case of the D1-Dy CFT, it
was shown that [43] that the entwinement of single interval on all the strands
corresponds to £ = 0 in equation (163).

5.5.3 Massless BTZ Black Holes

For BTZ black holes, the situation is significantly more subtle [43]. On one hand,
massless BTZ black hole geometry act as the m — oo case of a Z;, conical
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defect and could naively be expected to be some similar limit in the dual CFT.
However, according to the literature [183], the average number of m-cycles (Ny,)
in the D1-Dg CFT is

8

. 2712
sinh ( xm

(Nm) = > : (164)

In the large N limit, typical states [43] have a number of m-cycles that is very close
to this average. Therefore, this average can be used to construct the corresponding
CFT state. In this case, it has, once more, been shown [43| that the (regularized)
length of non-minimal geodesics that penetrate the entanglement shadow is given
by entwinement of the boundary CFT.

5.6 CONCLUSION

At the beginning of this chapter, three-dimensional gravity was introduced. Even
though Einstein gravity in 2+1 dimension has no propagating degrees of freedom,
it is most certainly not a sterile theory. Starting from empty AdSs, non-trivial
spacetimes like conical defects and the BTZ black hole can be obtained. To do
this, identifications of the points of AdS3; are made under elements of the isometry
group SO(2,2) in a process known as orbifolding.

It turns out that the spacetimes obtained by orbifolding AdSs have regions
that cannot be probed by minimal surfaces related to Ryu-Takayanagi. This
kind of regions are known as the entanglement shadow. To probe the shadow, a
new holographic quantum information quantity, called entwinement, has recently
been developed. Entwinement aims to link the entanglement of internal degrees
of freedom of a boundary CFT to quantities in the bulk, specifically non-minimal
bulk curves. The two main ways to describe entwinement — the covering space
picture and the entwinement definition for discretely gauged theories — have been
discussed in this chapter.

This chapter has also shown that the possibility of a covering space picture for
massive, non-rotating BTZ black holes exists. This is an expansion on the previ-
ously known covering space pictures for conical defects and massless BTZ black
holes. According to the literature, the D1-Dg CFT, which was briefly discussed in
this chapter, can be used to explicitly calculate the entwinement dual to the geo-
metries of conical defects and massless BTZs. It is however yet unknown how to
expand this approach to massive BTZs. Motivated by both the success and chal-
lenges of entwinement, the next chapter will show how to introduce entwinement
to tensor networks.
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TANGIBLE HOLOGRAPHY: ENTWINEMENT ON TENSOR
NETWORKS

6.1 INTRODUCTION

In the past five chapters, the link between quantum information and holography
has been discussed. So far, a lot of attention has been given to tensor networks,
entanglement entropy, entwinement and the Ryu-Takayangi formula. In this final
corpus chapter these ingredients will be combined to show that there exists a
hitherto unknown conceptual link between CFT entwinement and the bulk phys-
ics within an AdS-sized region of conical defects or the massless BTZ black hole.
Along the way, the concept of entwinement is introduced to tensor networks,
which leads to new (stacked) holographic tensor networks on conical defects and
massive, non-rotating BTZ black holes.

6.2 ENTANGLEMENT SHADOWS

It was mentioned in the previous chapters that certain spacetimes like the conical
defect and the BTZ black hole have an area in the bulk that cannot be probed [41—
43| by minimal surfaces or geodesics. This region is known as the entanglement
shadow. As shown in that chapter, there is a novel quantum informational quant-
ity called entwinement [42, 43| that corresponds to non-minimal but extremal
curves that can probe the entanglement shadow. To understand how entinement
can be used in combination with tensor networks, it would first be interesting
to gauge if the entanglement shadow also exists in tensor networks. This would
provide significant motivation for the development entwinement in tensor net-
works.

6.2.1 Why are there Shadows?

In AdS/CFT, an entanglement shadows show up [41, 186] when a boundary re-
gion that is continuously increased in size, suddenly changes from being anchored
on one bulk surfaces to another. To be more specific, when a boundary region
is increased and the corresponding bulk surface is pulled inwards [41] until it
suddenly switches to another bulk surface, there will be a region in the middle of
the time-slice of the asymptotically AdS in question whose geometry not probed
by spatial entanglement entropy.

The conical defect is a simple yet important example [41, 42| of how this sudden
switch between surfaces (in this case geodesics) can happen. Recall from last

39
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(a) Before the sudden changeover (b) After the sudden changeover
of geodesics. of geodesics.

Figure 39: A graphical representation [42] of the "flip" between geodesics that occurs
in spacetimes that have an entanglement shadow. In this case the spacetime
is a conical defect obtained by Zj5 identifications of AdS;. The geodesics are
shown in red, the boundary intervals are shown in green.

chapter that conical defects do indeed have an entanglement shadow and that
they can be obtained from AdS; under identification by Z,,. The reason that
there is a sudden "flip" between which geodesics correspond to the boundary
interval, is that Ryu-Takayanagi links boundary intervals with globally minimal
surfaces [33, 41, 186] or curves. This means that curves have to be minimal under
the Z,, identification.

From figure 39, it can be observed that when a boundary interval is big enough,
the lengths of the corresponding curves are minimized by passing through the
edges of the boundary intervals in the different copies of the conical defect geo-
metry. The question now is, can this sudden transition be translated to HaPPY
tensor networks? To check this, the hexagon tensor network, which produces the
holographic state [57], and its discrete Ryu-Takayangi description, the greedy
algorithm, will be studied under Z,, identification.

6.2.2 A Tensor Network for the Conical Defect.

Recall from chapter 4 that in the hexagon tensor network, there is an algorithm
called the greedy algorithm which produces a cut through the tensor network
whose length, defined by the number bonds that are cut, is the discrete equivalent
of the length of a Ryu-Takayangi geodesic. By identifying the hexagon tensor
network under Z,, and using the greedy algorithm, it is possible to check if and
when a "flip" occurs in the tensor network equivalent of conical defect geometry.

To work out how the tensor network behaves under Z,, identifications, it is
necessary to work out how many tensors each layer of the hexagon tensor network
contains. A subtlety here is that once the central tensor is chosen, the tensor
network turns out to have two kinds of tensors, a tensor with one leg connected
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Figure 40: A visual representation of the open-folded hexagonal HaPPY tensor network.
Two layers (representing layer n and layer n + 1) are colored in. The red
tensors are type f, the green tensors are type g. The number of the layer
increases with depth, so layer n is drawn above layer n + 1. With this figure,
the discussion on the recursive relation can be checked.

to the previous layer and a tensor with two legs connected to the previous layer,
these tensor are denoted by f and g, respectively.

In the appendices of the HaPPY tensor network paper [57], a recursive rela-
tionship for the number of f and g tensors in a layer of the pentagon code was
developed. Accordingly, as part of the research in thesis, a similar recursive rela-
tionship for the hexagonal tensor network was developed. From inspection of the
tensor network, it was inferred that the recursive relationship is

()-690)
n+1 11 8n

To understand this recursive relation, look at figure 40, and realize that each f,
type tensor gives rise to three f,1 tensors and two g,+1 tensors. Similarly, it an
be seen from that figure that each g, tensor will produce two f,41 tensors and
two g,41 tensors. To get the total amount of tensors in layer n + 1, one must
realize that all the g,1 tensor are shared by two tensors in layer n. Therefore,
the amount of g, tensors that naively follow from f, and g, must be divided
by two. The result of this counting exercise is thus exactly that f,+1 = 3f, +2gn
and that g,11 = fu + gn, as is denoted in equation (165).

The recursive relation describe in equation (165), is only valid from the third
layer on, which has 18 type f tensors and 6 type g tensors so that

(1)-(3) (). -

where n — 3 was relabeled to n. Continuing to expand the ideas first presented
in the HaPPy paper to the hexagonal tensor network, it can be shown that at

large n,
2-v3\"
1+O<<2+\@> )] . (167)

fotgn=24(2+V3)"
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Because this kind of calculations are parnumber to this chapter, it is worthwhile
to take a brief look at the technicalities. To obtain the above expression, start
from equation (166), and diagonalize

(3 2 .
M_<1 1) (168)

which can be done via M = SDS~! where the coordinate transformation matrices
are,

N
H%

[68)
(o))

1 343
(1-V3 1+3 N
s_< ) ) ) & S'= s | (169)

N
S
(o)

and where the diagonalized matrix is

_(2-Vv3 0 )
D—< 0 2+\@>. (170)

The resulting reformulation of equation (166) is thus
|
fn i 1—vV3 1++3 2—4/3 0 23 ’ (171)
o 1 1 0 2++3 !
Working out this expression gives that
n
M) —6(?) 1o (222
n 1 2443

which immediately yields equation (167). Similarly, calculations for the hexagonal

(2+ \/g)n , (172)

tensor network under Z3 were developed in this dissertation. Specifically, it can
be calculated at which number of boundary tensor, the "flip" of the geodesics
happens. To do this however, it must be realized that after the "flip" the "outside"
of the geodesic is covered by the greedy algorithm instead of the "inside". Because
at first instance, this might seem to be counter-intuitive, a simple example is
shown in figure 41.

To determine when the sudden transition between geodesics happens, it suffices
to calculate the minimal number of tensors needed to have the greedy algorithm
reach the central tensor. When the central tensor is included, it is certain that the
greedy algorithm covers the inside of the tensor network, and hence the "flip" has
happened. To determine the minimal number of tensors for the greedy algorithm
to reach the central tensor, it is necessary to go to a layer of the hexagonal
tensor network which has an number of tensors divisible by the m of the Z,,
of interest. In that layer, the minimal region of tensors that cause the greedy
algorithm to reach the central tensor can be determined by trial-and-error. Once
this minimal region of the layer is determined, a recursive formula reminiscent of
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Figure 41: A visual representation of the open-folded hexagonal HaPPY tensor network
for a Zj3 conical defect. In purple everything inside the greedy algorithm. It is
obvious that the geodesic is on the inside of the purple region. So the greedy
algorithm is outside the entanglement wedge. The blue lines indicate the Z3
identifications. The grey areas are copies of the black areas on the other side.
This is indicates the that the tensor network is closed.

Table 1: An overview of the results of the calculations of the minimal and maximal frac-
tions of the boundary regions needed to respectively include or bar the central
tensor in/from the greedy algorithm as run on the Z, identified hexagonal
HaPPY tensor network.

ADS3 IDENTIFICATION MINIMAL FRACTION MAXIMAL FRACTION

Z, 1/3 2/3
Z3 0,27 1/2
Zg 0,27 0,80

the one used above to determine the number of each kind of tensor in each layer
can be developed. Practically, these recursion relations are once more obtained
as a tensor type counting exercise. Technical details, including the explicit form
of the recursion relationships for several conical defect hexagonal HaPPY tensor
networks, can be found in the appendix on tensor network calculations.

Having obtained the correct recursion relations for the amount of tensors that
is needed in each layer (deeper than the one on which the trial-and-error was
used) it is again possible to diagonalize and work out an equation for f; + g}, of
the same form that equation (172) has. Here, f;, and g, are the f and g type
tensors in layer n that are needed to obtain the "flip". For each of the considered
conical defects, the leading order terms of this f; + g}, expression can also be
found in the appendix on tensor network calculations. This will turn out to be
useful later on. One remark in this context is that these expressions are only valid
for large n.

From the above described procedure, it is known how many tensors are needed
for a flip in each layer. To compare this calculation to the continuum case, it
has to be worked out what fraction of tensors at the boundary is necessary for
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the greedy algorithm to reach the central tensor. To calculate this fraction, the
expression for the minimal amount of tensors in layer n needed for the "flip" is
divided by the total amount of tensors in that layer. Because the nominator in this
expression is derived from recursion relations with initial conditions determined
in a single wedge of the conical defect, the denominator of this expression has to
be obtained by taking equation (167) and dividing it by the amount wedges in
the covering space of the conical defect.

Finally, to obtain the explicit value of this fraction tensors at the boundary, the
limit n — oo has to be applied to the aboe described calculation. As a result of
this limit, only the dominant terms in both the nominator and the denominator
remain (the sub-dominant terms turn out to converge to zero). Practically, one
could look up the dominant term of f; + ¢}, in the appendix (or calculate it
as shown in the beginning of this section), divide it by the dominant term in

n
equation (167), i.e. 24 (2 + \/§> , multiply the entire expression by the amount

of wedges before taking the limit n — oo. The result is the (globally) minimal
fraction of boundary tensors needed in the greedy algorithm to produce the "flip".

An important remark here is that because tensor networks are discrete, there
might be some off-set in the above described calculation depending on where
(angularly speaking) in the tensor network the initial minimal region is chosen.
In the above prescription, the recursion relations is determined starting from the
absolute minimal amount of tensors needed for the "flip". However, to obtain a
better gauge of when the sudden transition happens, it also useful to look at local
minima. Specifically, it is worthwhile to regard the maximum of all local minima.
This region can also be determined by observation and trial-and-error and the
same procedure obtain a fraction at the boundary as used previously, can be used.
Once more, recursion relations for these regions and the resulting dominant terms
in f) + &), can be found in the appendix on tensor network calculations.

The results for the boundary fractions for both minimum of all minima and the
maximum of all minima in the cases of the Z,, Z3 & Z¢ conical defect are shown
in table 1. From these results it can be realized that the continuum value always
lies in between the minimal and maximal fraction, which provides confidence
in the fact that the greedy algorithm behaves (roughly) like Ryu-Takayanagi
geodesics are known to do in the AdS/CFT correspondence, even in non-trivial
spacetimes. This motivates the study of entwinement in tensor networks. One
major question is whether or not a covering space picture can be developed for
the hexagon HaPPY tensor network. Similarly, one may wonder if the long string
model for entwinement can be linked to the tensor networks.

6.3 A COVERING SPACE PICTURE FOR TENSOR NETWORKS

In the previous chapter, the covering space picture for entwinement was discussed
and, at least partially, expanded to a massive but non-rotating BTZ black hole.
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In essence the idea was to take a covering space, typically AdSs, and orbifold it
to obtain a more complex spacetime upon which the geodesics become extremal
but non-minimal curves. The idea is then that these curves correspond to the
entwinement of the boundary CFT.

Because entwinement is expected [42, 43] to capture some kind of measure
for the entanglement of the internal degrees of freedom of the CFT, it would
be expected that a tensor network capable of simulating entwinement has some
kind of internal structure on the boundary and is capable of forming more ex-
tremal but non-minimal curves via an algorithm akin to the greedy algorithm. In
this dissertation it is shown that these aims can be achieved by orbifolding the
hexagonal HaPPY tensor network.

D

a) Z3 Conical Defect (b) M#0,]=0BTZ

Figure 42: Graphical representation of two examples of orbifolded tensor networks. The
pink lines show the edges of the fundamental domain. The dotted blue line
show the extra reflective surface used in the massive non-rotating BTZ.

In the case of the conical defect, the orbifolding is relatively simple. If the
tensor network is deep enough, there will be a layer whose number of tensors is
divisible by the n € IN that determines Z,,. In this case the conical defect is found
by taking the n copies of the conical defect geometry with their tensor network
and superimposing them all on top of each other. This is distinctly different from
other proposal for holographic tensor networks.

To obtain the winding geodesics expected from the covering space picture of
conical defects, the greedy algorithm can be run on the covering AdS3 time-slice
and the resulting discrete geodesic can be orbifolded. No qualitative differences
compared to the continuum case show up. This set-up can be interpreted as
having a network with tensors with 6n legs, which gives it some sub-structure.
The only subtlety here is in the central tensor, which has only 6 legs, each of
them connected to one layer of sub-structure.
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6.3.1 A Tensor Network for a Massive BTZ black hole

In the previous paragraphs, the multi-layered variant of the hexagonal HaPPY
tensor network for the conical defect and its entwinement applications were briefly
discussed. It is however not clear whether it is generically possible obtain a (multi-
layered) hexagonal HaPPY tensor network, with an entwinement description, for
a generic (orbifold) spacetime. In this dissertation it is shown that at least for
a massive but non-rotating BTZ there exists cases in which it can be done via
orbifold transformations on the hexagonal HaPPY tensor network on the t = 0
time-slice of AdSs.

Recall from the extensive discussion on the massive, non-rotating BTZ black
hole as an orbifold of AdSs that was held in the previous chapter, that the
necessary orbifold transformations, for the regarded BTZ, can be obtained via a
combination of reflections over geodesics in the t = 0 time-slice of AdS3. While
extending this orbifold procedure to a tensor network setting, it is important
to respect the tensor network structure. To make sure that this happens, the
geodesics must be chosen so that they only cut through the middle of contracted
tensor legs.

The above requirement on the geodesics clearly strongly limits the number
of orbifold transformations that can be applied to a tensor network. To get a
better or more intuitive understanding of which geodesics are still allowed, an
alternative, more practical, formulation of the requirement on the geodesics must
be considered [61, 62]. To do this, the tessellations of hyperbolic spaces that are
related to tensor networks like the hexagonal HaPPY tensor network are needed.
As explained in chapter four, the HaPPY tensor networks were constructed by
tiling a time-slice of AdS3 and placing a tensor in the middle of each tile. The
legs of the tensors meet at the middle of the edges of the tiles. In this way there
is a (reciprocal) relationship between the tessellation of an AdSj3 time-slice and
the tensor network that is defined upon that time-slice.

In the language of hyperbolic tessellations of the t = 0 AdS; time-slice, the
above discussed requirement on the choice of geodesics in the orbifolding proced-
ure is translated to the demand that the geodesics (over which must be reflected
during the orbifolding) must lie entirely on edges of tiles of the tessellation. An
example of geodesics fulfilling this requirement is shown in figure 42b, where it
can clearly be seen that the geodesics (which are drawn in pink) run along the
edges of tessellation tiles. From that figure it can also be deduced, considering
the geometry of the Poincare disk, that those contracted tensor legs that are cut
by the geodesic, are indeed cut right in the middle.

The fundamental domain of the BTZ shown in figure 42b, is the region in
between the two geodesics. The tensor network in the fundamental domain can
be read of from figure 42b. As in the beginning of this chapter, it is practical
to develop a tensor network visualization that is not related to the underlying
tessellation. The resulting visualization of the tensor network in the fundamental
domain of the BTZ, can be seen in figure 43.



6.3 A COVERING SPACE PICTURE FOR TENSOR NETWORKS

One aspect of the tensor network for a massive but non-rotating BTZ that can
be seen in figure 43, is that it has open legs on the sides (shown in figure 43 with
green dots). These open legs are caused by the cut made by the geodesics that
demarcate the edges fundamental domain, which are exactly the geodesics that
are used to reflect over in the orbifold transformation.

To close, i.e. contract, these legs there are two options, either glue them to-
gether [61, 62| as shown by the gray dotted lines and keep a single layer of
tensor network or create a stack of tensor networks each of them each connec-
ted to neighboring layers via these legs on the side. In this second situation, the
massive but non-rotating BTZ tensor network model is similar to the model for
tensor network entwinement on conical defects discussed in the previous section.
By applying the greedy algorithm to this BTZ tensor network setup with many
layers of tensors, the greedy algorithm equivalent of winding geodesics can be
obtained. Hence, once more, it is expected that entwinement of tensor networks
requires some layers, or internal structure, of tensors.

6.3.2 The Coxeter group

In the above discussion it was postulated that the geodesics used in the orbifold
transformation for massive but non-rotating BTZs must lie on the edges of the
tessellation tiles of the tensor network, if the tensor network structure has to be
respected. In this way, a hyperbolic tessellation determines which geodesics, and
hence orbifold transformations, are allowed. Even though requirement that the
geodesic must lie on the edges of the tiles of the tensor network can be understood
on an intuitive level, i.e the tensor legs are cut in half, it is worthwhile to take a
somewhat more mathematical look at the matter.

To gain a more general understanding why the above described geodesics must
lie on the edges of the tessellation tiles of the tensor network of AdSs, one must
consider the how tessellations of the hyperbolic plane are constructed. Typically,
a (regular) tessellation is constructed by placing a polygon, like for instance a
hexagon or a pentagon, in the center of the hyperbolic space. This polygon is
the first tile of the tessellation and the rest of the tiling is obtained by iteratively
reflecting the polygon over its own edges. It is clear that exactly these reflections
over the edges retain the tessellation structure and hence the tensor structure.
So the reflections that do not break the tensor network structure are made of
reflections over the edges of tiles, explaining the requirement on the geodesics.

The reflections over the edges of the tiles of a hyperbolic tessellation from
a (formal) symmetry group known as the Coxeter group [176, 187, 188]. The
Coxeter group has been used in the literature [61, 62] to discuss holographic
tensors networks of other tessellations than those used in the HaPPY paper. It is
currently not entirely clear if the greedy algorithm and/or the orbifold procedure
described here can be expanded on those other holographic tensors networks.
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Figure 43: The hexagonal HaPPY tensor network for the fundamental domain of the
massive non-rotating BTZ with B = 47t. On the left the corresponding funda-
mental domain is shown. The grey lines there, indicate the part of the tensor
network that lies outside the fundamental domain. One option to deal with
a tensor network like this is to glue together the edges, as shown here by
green points and grey dotted lines (right figure). In the model proposed in
this dissertation, the (infinite number of) copies of the fundamental domain
are stacked upon each other creating a tensor network with sub-structure in
the tensors.

6.4 THE PATH TO SUB-ADS LOCALITY

As the situation stands, there is a tensor network model for entwinement, which
probes the entanglement shadow, in terms of stacked tensors. An important com-
ment here, is that there is now more than one tensor on each AdS-sized patch
of bulk spacetime. As mentioned in the introduction, it is still unknown how
the boundary CFT encodes the information of the gravitational physics within
one AdS-sized bulk region. Ab initio, there are no concrete reason to suspect
that entwinement, which was developed to probe a central bulk region, would
play a significant role in answering the questions about sub-AdS locality which
is present throughout the bulk, except maybe for the fact that the entanglement
shadow around a BTZ black hole is of AdS size.

6.4.1 Matrix Degrees of Freedom

To understand how entwinement is related to sub-AdS locality it is more than
worthwhile to have a detailed discussion on the exact nature of the problem.
Conceptually, it is known that there exists a so-called UV /IR-correspondence |12,
13] within the AdS/CFT correspondence. More concretely [47], an ultraviolet cut-
off of the boundary CFT at a certain wavelength ¢ is equivalent, in dimensionless
units, to a radial cutoff at ¥ = 1 — 4. The question of sub-AdS locality is essentially
one of how the information of the (quantum) gravitational physics within the
radial cutoff is stored in a CFT subject to a UV cut-off.



6.4 THE PATH TO SUB-ADS LOCALITY

Practically [13, 47|, it is most convenient to study the sub-AdS locality conun-
drum in the AdSs/CFTy correspondence. Consider a 3-sphere in the boundary
CFT, filled with UV cut-off cells of coordinate size 6. The total number of cells
needed to fill the ball is O(673). To facilitate a counting exercise, it is assumed
[12, 13, 47| that each independent quantum field degree of freedom on the bound-
ary corresponds to a single degree of freedom in each of the cut-off cells.

Recall from the second and third chapter of this dissertation that in AdS/CFT,
the boundary physics governed by a supersymmetric SU(N) theory. The number
of field degrees of freedoms in a U(N) theory is thus of order N2. Therefore
[12, 13], the number of boundary degrees of freedom Ny, . inside the 3-sphere is
of order,

NZ
Nyof. ~ O <(53) : (173)

Taking this idea to its most extreme, i.e. § = 1, means looking at a bulk sphere of
dimensionless volume 1. This kind of sphere has a proper radius [47]| of Ragqs and
a surface area of Rids. This thus means that an AdS-sized region of the bulk is
described by O (Nz) degrees of freedom. The great challenge of sub-AdS locality
[47] is in understanding how these N? (matrix) degrees of freedom encode the
gravitational bulk physics within an AdS-sized sphere.

As a sanity check for the above counting exercise, it can easily be show that
the degrees of freedom scale with the area of the sphere, as would be expected
from the holographic principle. To do this [47] first realize, using for instance
equation (53), that the area A of the considered 3-sphere times the compactified
S is

RS
A=—55 (174)

Then recall from the discussions below equation (50) and the discussion above
equation (69) that R% ;s = 47g;NI} and 2G = 7*g?I® so that it can be inferred

that
A N?
el 0 <53> . (175)

Combining the two above equations with equation (173) gives that Niof. ~
A/G, so that that the degrees of freedom do indeed [47]| scale with area of the
sphere. This verification of the above counting argument indicates that, at least
in AdS/CFT, a region of AdS-size in the bulk can be described holographically
by N? boundary degrees of freedom, like for instance the entries of an N x N
matrix, but that the exact description is unknown.

6.4.2 Long Strings to the Rescue

In the case of the AdS3/CFT, correspondence, specifically the conical defect, the
number of tiles that are placed on one AdS-sized region is dependent on the choice
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of n in Z,,. Ideally, one would want to have a stack of N or N? tensors on each tile
(or one tensor valued tensor) and a (quantum information) bulk property related
to those tensors. To achieve thi, the definition of entwinement as developed in
the setting of the D1-D5 CF'T has to be recalled. There, entwinement was seen as
the entanglement entropy of sections of different windings, known as strands, of
a set of closed, long strings, which describe the D1-D5 CFT. To introduce tensor
networks to this setting, each long string is identified with the border of a tensor
network. The windings of the long strings are achieved in the tensor network by
making Z, identifications.

According to the earlier discussion on entwinement in D1-Dg CFT, the long
string state for a Z,, conical defect spacetime that is dual to the D1-Dg CFT
has m windings in each long string. The number of long strings is N. The newly
proposed holographic tensor network state dual to the Z,, conical defect space-
time thus consists of N layers of tensors, where each group of m tensor layers is
connected (cyclically) to itself at the angular boundary.

For massless BTZs, the same model can be applied as long as the procedure
from the earlier discussion on entwinement in the continuum case is followed. In
that setting, the canonical description was used in which the total number of
strands were allowed to fluctuate. Because N is taken to be large,

8

. 27-[2
sinh ( xm

(Nm) = ) : (176)

will be the dominant contribution. Again identification under Z,, is used. Adding
in the symmetrization under S, gives the prescription of the holographic tensor
network state dual to massless BTZs.

The above described novel tensor network model links entwinement with the
sub-AdS locality problem. Currently the connection is mainly conceptual but one
can hope on further expansion of this newly proposed holographic tensor network.
In that regard, there are two subtleties to take into account. First off, each kind of
dual spacetime would correspond to a different tensor network state. This makes
general analysis challenging. The second subtlety is that the central tile is not
covered by N tensors but by N/u tensors. In the case of a conical defect, for
instance, the central tile is only covered by N/n.

6.4.3 On Pluperfect Tensors and sub-AdS locality

Recently, an alternative tensor model that claims to capture some aspects of sub-
AdS locality has been published [154]. Instead of using perfect tensors, that paper
proposes to use plu-perfect tensors. Plu-perfect tensors are a generalization of
perfect tensors obtained by imposing the so-called plu-perfection conditions. The
goal of these conditions is to create a network called the bi-directional holographic
code. Aside from trying to unify the holographic code and the holographic state
into a single network, it tries to create a code with sub-AdS resolution.



6.5 CONCLUSION

Contrary to the approach taken in this dissertation, where most of the attention
is given to the holographic HaPPY state, the authors of the paper about plu-
perfect tensors focused on the holographic HaPPY code. In the holographic code,
when trying to increase the number of tensors in each AdS-sized region of the bulk,
the bulk Hilbert space becomes larger than dimension of boundary Hilbert space.
By use of the plu-perfect conditions, the bi-directional holographic code creates
a so-called "physical" bulk Hilbert space which would have a fitting size. Instead
of stacking tensors on top of one-another as was proposed in this dissertation,
the bi-directional holographic code is obtained by relaxing [154] the requirement
to have a uniform tessellation of the Poincare disk. Due to the use of a non-
uniform tessellation, it is possible to put more than one tensor on an AdS-sized
region, introducing sub-AdS resolution to the tensor network. It is however, not
clear if and how this tensor network can be used to shed light on the previously
discussed encoding of the bulk degrees of freedom that lies at the heart of the
sub-AdS locality.

6.5 CONCLUSION

In this chapter, the introduction of entwinement to tensor networks was presented.
First it was shown that the sudden changeovers that characterize entanglement
shadows are also present in the hexagonal HaPPY tensor network, specifically in
the geometry of the Z,, Z3 and Zg conical defect. By using the covering space
picture, exploiting the Coxeter group and using the greedy algorithm, winding
geodesics can be obtained in tensor networks. In this approach tensor networks
are formed that have multiple layers of tensors on each AdS-sized bulk patch.

An sich, there is no reason to expect that entwinement, which focuses on
creating a link between boundary information, is linked to sub-Ads locality
which is present throughout the bulk. To make the connection ever stronger,
the long string model for entwinement in the D1-Dg CFT was extrapolated to
the hexagonal HaPPY tensor network. The resulting holographic state contains
a tensor network for each long string, which is orbifolded like a Z,, conical defect
where m indicates the number of windings in the string.

The resulting situation, has up to N tensors on each AdS-sized patch. These
internal degrees of freedom are expected to describe an AdS-sized bulk region. An
alternative model which gives up on the uniform tiling of the hyperbolic space,
has recently been proposed in the literature. In that model, which uses a different
kind of tensors, some form of sub-AdS resolution is achieved, so maybe the road
to sub-AdS locality is indeed paved by tensors. More research on the similarities
between the two described models and their relationship to sub-AdS locality is
therefore necessary.
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7.1 QUANTUM INFORMATION, HOLOGRAPHY AND ENTWINEMENT

In the continuous attempt to unify all aspects of physics, the concept of holo-
graphy has come to prominence. The AdS/CFT correspondence, the most com-
mon of holographic realizations, asserts that quantum gravity (UV completed by
string theory) is equivalent to a lower-dimensional non-gravitational conformal
field theory. Recently it has been discovered that holography, specifically AdS-
/CFT, has a connection with quantum information theory. In this dissertation
that link was further explored.

The AdS/CFT correspondence is often conceived to be a relationship between
a D + 1-dimensional quantum gravity theory in an asymptotically Anti de-Sitter
spacetime and D-dimensional conformal field theory living on its boundary. Con-
tinuing this train of thought, it can be shown that bulk physics within particular
minimal surfaces is reconstructible from the spatial entanglement entropy on the
boundary of AdS. In certain (three-dimensional) cases however, there are cer-
tain central regions, known as the entanglement shadow, that cannot be accessed
using boundary spatial entanglement entropy.

¥y, coordinates

£,8 coordinates
0 1 90 1

Figure 44: The effect of the orbifold transformation of a massive but non-rotating BTZ
black hole. On the left side the t = 0 time-slice of empty AdS3 with a geodesic.
On the right the corresponding t = 0 time-slice of the massive but non-
rotating BTZ black hole. The geodesic has become a winding curves, that does
no penetrate the black hole horizon. This is an example of how entwinement
cannot be used to probe inside the horizon of a black hole.

To probe these regions, recent literature proposes the introduction of a new
quantum informational measure on the boundary. This newly proposed quantum
informational quantity — called entwinement — agrees with the lengths of non-
minimal bulk curves and measures the internal entanglement of parts of the
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boundary CFT. This is strongly reminiscent of how globally minimal bulk curves,
i.e. geodesics, are known to correspond to the spatial entanglement entropy of
the boundary region upon which their end-points are anchored.

Another region that cannot be probed by the entanglement entropy of the
boundary CFT is the interior of a black hole. Because non-minimal bulk curves,
related to entwinement, probe the entanglement shadow around a black hole ho-
rizon, one could wonder whether or not these curves also penetrate the black hole
horizon. From the literature, it is known that single Ryu-Takayanagi surfaces in
static spacetimes cannot probe beyond the horizon. It has been observed that
the horizon of massless black holes in three-dimensional negatively curved space-
times, i.e. massless BTZ black holes, cannot be probed by these non-minimal
curves. In this dissertation, the same was seen for massive but non-rotating BTZ
black holes.

In addition, it is unknown how bulk physics inside an AdS-sized region is
encoded into the boundary CFT. This seeming lack of resolution is commonly
known as the problem of sub-AdS locality. More specifically, sub-AdS locality is
the question of how N? boundary degrees of freedom describe the bulk physics
within a g-sphere of AdS-scale. The central result of this dissertation is that
entwinement, a measure of the internal structure of the CFT, can be linked
to sub-AdS locality via tensor networks. To understand this relationship, this
dissertation had to expand the ideas of entwinement to orbifolded holographic
tensor networks.

7.2 ORBIFOLDING HOLOGRAPHIC TENSOR NETWORKS

Tensor networks, which originate from condensed matter physics, are mathem-
atical models that exploit the (entanglement) structure of a strongly coupled
system to create a numerical simulation of that system. It has been proposed in
the holography community that a tensor network could capture some aspects of
AdS/CFT and make them tangible.

Harlow, Pastawski, Preskill and Yoshida (HaPPY) have shown that there are
tensor networks which have a discrete analogy, called the greedy algorithm, of
the geodesics described in the previous section. The same group of researchers
showed that a tensor network exists that emulates certain quantum error correct-
ing properties of AdS/CFT. Inspired by their success, this dissertation aspired
to expand these tensor networks so that they could include some algorithmic
version of entwinement.

A first way to describe entwinement, which is particularly useful for time-
slices of three-dimensional spacetimes, is to start from empty AdS and then
transform it so that both boundary and bulk consist of more than one layer. This
approach creates some internal structure in the boundary CFT, the entanglement
of which is captured by entwinement. It has been shown in the literature that by
orbifolding AdSs, i.e. taking identifications under its isometries, the geodesics of
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the original AdS3 time-slice are turned into the extremal but non-minimal curves.
Their length is the entwinement of the spacetimes obtained by orbifolding, e.g.
conical defect, massless BTZ.

(a) Z3 Conical Defect (b) M#0,] =0BTZ

Figure 45: Graphical representation of two examples of how to orbifolded the hexagonal
HaPPY tensor network. The pink lines show the edges of the fundamental
domain. Throughout this thesis, these lines are referred to as the angular
boundary. The dotted blue line show the extra reflective surface used in the
massive non-rotating BTZ.

The reason that it is challenging to translate the above described covering space
pictures to tensor networks, which impose some sort of hyperbolic tesselation, is
that tensor networks do not retain all of the isometries of the underlying AdS;
time-slice. So depending on the choice of tensor network, the amount of possible
orbifold transformations is limited. Nonetheless, it was shown in this dissertation
that the hexagonal HaPPY tensor network and accompanying greedy algorithm
can be transformed into a tensor network for conical defects and certain massive
but non-rotating BTZ black holes. The main observation resulting from this
endeavor, is that a system of stacked tensors is necessary to describe the non-
minimal curves expected from entwinement.

7.3 SUB-ADS LOCALITY IN TERMS OF LONG STRINGS

A second, but seemingly equivalent, notion of entwinement can be found in the
long string picture for discretely gauged theories like the D1-Dyg CFT. In this
model, entwinement is defined as the spatial entanglement entropy between dif-
ferent parts of the strands of the long strings. Recall that a strand is defined
as a single winding of the long string. According to the literature, this kind of
entanglement entropy can be calculated in the case of full decoupling — at the
orbifold point — and it turns out to be equivalent to the length of the winding
curves in the three-dimensional spacetimes dual to the strongly coupled regime
of the D1-D5 CFT.
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An important aspect of the above described model is that the number of wind-
ings of the long strings is N = N;Ns where N; and Ns are the number of
D1-branes and D5-branes. Following 't Hooft’s argument N is taken to be large.
The result is thus a system with a large number of strands. The boundary of
a tensor network, which is essentially a spin chain, resembles a long string. In
the previous section, it was explained that tensor networks can be folded up and
hence it is possible to devise a set-up in which each long string is identified with
a tensor network and where each winding is implemented as an orbifold of the
tensor network.

Remarkably, this situation bridges the gap between the challenges of sub-AdS
locality and the concept of entwinement. By folding the tensor networks and
superimposing them, up to N tensors are placed upon each tile of the hyper-
bolic tessellation. The critical point here is that each polytope of the hexagonal
HaPPY tensor network is AdS-sized. This shows that the tensor network model of
entwinement according to the long string picture provides a natural way to intro-
duce substructure to sub-AdS bulk physics. This insight is the first, albeit mainly
conceptual, link between sub-AdS locality, tensor networks and entwinement.

7.4 OUTLOOK

Even though an interesting conceptual relationship with entwinement was dis-
covered, a solution for the problem of sub-AdS locality is still missing. A stricter
or more concrete understanding of how the entwinement of the boundary CFT
is related to the internal (entanglement) structure of a AdS sized region in the
bulk might shed some light on the problem. There is at least one additional signi-
ficant question regarding the D1-Dg tensor network model for entwinement that
is directly related to the work presented in this dissertation.

As explained in the sixth chapter, there exists a recent and alternative approach
to linking sub-AdS locality and tensor networks that makes use of plu-perfect
tensors. There the idea is to push several tensor onto a single AdS sized area of
the Poincare disk by using a non- uniform tessellation of the hyperbolic plane.
Whether or not this model can be translated, in part or in whole, to the long
string tensor model developed in this dissertation remains an open question.

Concerning the concept of entwinement itself there are many open questions.
A central challenge for entwinement is that a definition in terms of a Neumann
entropy is still missing. Another question is whether or not the definition for
discrete gauge theories can be expanded to other kinds of theories. Furthermore,
one can wonder whether or not that approach can be expanded to massive and
rotating BTZ black holes. Currently, it is not clear how to construct the appro-
priate states nor is it generally known how to calculate the correlation function
that follows from it.

Pertaining to two of the practical results developed in this dissertation, the
covering space picture of massive but non-rotating BTZ black holes and the
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(entwinement oriented) tensor network models of the same BTZ black holes and
of the conical defects, it must be said that it is likely that there are significant
challenges in expanding them. It is, for example, not clear how to deal with the
non-trivial combination of time and space that would result from the orbifold
transformations needed to obtain any kind of rotating BTZ.

Another challenge is to figure out how to take the n — oo limit of the Z,
identifications made in the conical defect tensor network. The motivation for this
is that the resulting tensor network would describe the geometry of a massless
BTZ black hole, whose entwinement is understood in both the covering space
picture and as a dual to the discretely gauge theories as discussed in chapter
five. Similarly, it is unclear if a tensor network picture for massless BTZs can be
obtained as the limit of either conical defect or massive non-rotating BTZ black
hole.

Finally, it was realized during this dissertation that developing a solid notion
of time-evolution for holographic tensor networks is a profound and pressing
challenge. Not only is this development necessary to obtain tensor networks for
rotating BTZs, it could also be useful to understand time-evolution of entwine-
ment and the quantum error-correcting properties of AdS/CFT.

7.5 FURTHER READING

Even though the interplay of holography and quantum information is a young
field of research, there are some excellent and extensive review papers available. A
pedagogical overview of the quantum physics of black holes and holography, can
be found in Daniel Harlow’s "Jerusalem Lectures on Black Holes and Quantum
Information" [189]. Extensive and insightful discussions (and diagrams) on the
relationship between spacetime, entanglement and gravitation can be found in
Mark Van Raamsdonk’s "Lectures on Gravity and Entanglement" [144].

Takayanagi and Rangamani are currently writing a book on holography and
quantum information and have published the early chapters [141] as an advanced
review paper of the topic. Neither this paper nor the others mentioned in this
section contain discussions on either entwinement or holographic tensor networks.
In that last regard the original papers by Swingle [58] and the HaPPY collect-
ive [57]| are strongly recommended. Most of the currently published aspects of
entwinement in holography can be found in the two founding papers [42, 43| by
Vijay Balasubramanian and his collaborators.

7.6 ONE MORE THING

And then finally, there is one more pressing open question, the first ever question
asked in this dissertation; are we holographers or holographists? Neither the
Cambridge nor the Oxford Advanced dictionary have any clear opinion on the
matter. On-line use of the word ’holographer’ is however common with regard
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to the appropriate researchers in the field of photonics. Whether or not this
colloquial use can be expanded to high-energy physics researchers is a matter of
taste upon which the author of this dissertation has no further opinion to offer.
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NOTATION, CONVENTIONS AND SOME DIFFERENTIAL
GEOMETRY

This appendix provides an overview of several notations and conventions as used
in this dissertation. At the end some notions of differential geometry are recapped.

A.1 NOTATION

A. Spacetime indices are typically denoted by Greek letters at the end of the
alphabet, i.e. p,v,p.

B. Spinor indices are typically denoted by Greek letters at the beginning of
the alphabet, i.e. a, B, .

C. Symmetry indices are typically denoted by capital Latin letters,i.e. A,B,C.

A.2 CONVENTIONS

A. The metric tensor used here is the "Mostly Minus" or "West Coast" metric,
i.e.

n = diag(+,—,...,—).

B. The Levi-Civita tensor is defined here according to

€0123 — 1 & 60123 =—1.

C. Anti-symmetrization is always taken with weight one, i.e.

1

A[ab] = ) (Agp — Apa) -

D. The gamma matrices are defined by
28 = YuYv + MWV,

()" =1"n1°,
Yuv = YY) r Yuvp = Y[uYv Vo) -+ -
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A.3

DIFFERENTIAL GEOMETRY

Throughout this dissertation, standard notions from differential geometry are
used. In the interest of thoroughness, some of them are briefly recapped here.

A.

Of the different concepts that can be defined within differential geometry,
totally anti-symmetric tensors have recieved special attention. They are
known as p-forms and are defined, in function of the coordinate differentials
dxH, as

1
I H H
wP) = acuym__.m,dx1 /\z7lx2 N... /\dxp.

. The wedge product A used in the above expression is defined as

w(p) A v(q) = (p —|— q)!w[}llﬂz---ﬂpvyp+1}4;7+2"-ﬂp+q} .

. The exterior derivative is defined as completely antisymmetric by

1
dwP) = aa},a)mmmyl[}plac” Adxl Ndxh AL A dxy .

. On a D-dimensional manifold, any D-form can be chosen as an integral

defining volume form w,

= [

In essence, this integral is thus nothing more than a map from an D-form
(field) to the real numbers. The canonical volume form dxP is defined by

dxP = dx" Adx' AL A dxPTT

which due to the definition of the wedge product is indeed a D-form. Recall
that the Levi-Civita tensor is defined by €,y.., = \/|det(g)|€.., where €
is the Levi-Civita symbol. Choosing

1
w = ﬁewmpdx" ANdx" A...AdxP

allows the volume elements w and dxP to be related to one-another because,

g'ew pdxt Ndx" A /\dxp— —\/ |det(g) €. pdx! Ndx" N... NdxP,
so that
1 _
w =5 \det(g)|Epy...pdx" Adx’ A... NdxP = \/|det(g)|dx"

so that integral over a scalar function ¢(x) (like a Lagrangian density) on
a D-dimensional manifold is given by,

1_/4; V1det(g)ldx®.



THREE-DIMENSIONAL GRAVITY AS A CHERN-SIMONS
THEORY

B.1 CHERN-SIMONS THEORIES

It was shown in the second chapter of this dissertation that gravity can be ex-
pressed in terms similar to that of a gauge theory. In the case of three-dimensional
gravity, the theory can be expressed [50, 51| exactly as gauge theory, more spe-
cifically as a Chern-Simons type of gauge theory. Chern-Simons theories |50, 163]
are topological theories; which means that they can be written purely in terms
of a gauge field, without the requirement of an involvement of a metric tensor.

For a compact symmetry group G with a gauge field A = A,dx", a Chern-
Simons gauge theory is of the form [50, 163]

Scs. :/deTr [A/\dA—kéA/\A/\A} ) (177)

where the wedge product A and the exterior derivative d are defined as discussed
in the appendix on differential geometry. The variation of the action with respect
to A gives [51], via integration by parts, that

5Scs. = /de Tr[26A A (dA + AN A)] — /delx Te[ANGA] .  (178)
d

Assuming that the variation of the gauge field, d A, vanishes at the boundary, the
second integral term can be dropped. Then the equation motions require that
the field strength

F=(dA+AANA), (179)

must vanish. Locally, this implies that A = ¢7!dg with ¢ € G so that A is
purely a gauge term which explains why the Chern-Simons theory [50, 163 has
no propagating, i.e. dynamical, degrees of freedom.

B.2 NEGATIVELY CURVED THREE-DIMENSIONAL GRAVITY

To obtain [51] a Chern-Simons theory for three-dimensional gravity with A < 0,
take the symmetry group G = SL(2,R). This particular choice will be motivated
later on. Starting from the frame field, e* = e‘;dx”, and the spin connection

wt = %e“hcwybcdx", two gauge fields can be defined as,

1
AdS

AFE = 7 4

er. (180)
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THREE-DIMENSIONAL GRAVITY AS A CHERN-SIMONS THEORY

In the mostly minus-sign metric, the corresponding generators T? are given [164]

by
0 _ ( 0 1/2) o (1/2 0 ) ol ( 0 1/2) . (a8)
~1/2 0 0 -1/2 1/2 0

Now, inspired by the Lie algebra isomorphism SO(2,2) = SL(2,R) + SL(2,R) it
is postulated [51, 164] that the Chern-Simons theory for three-dimensional gravity
is a combination of the Chern-Simons theories for AT and A~ specifically

Scs. = Scs.(AT) —Scs. (A7), (182)

is proposed. Indeed, the above expression can be worked out |51, 164]| and rewrit-
ten [51] to read,

1 1
Scs. = / 2¢" A\ dwy + =€5pew? A W + ~—5—€apc€" N P Aet ), (183)
2 3R%4s
which is the frame-field equivalent of equation (133). Three-dimensional gravity
is thus a Chern-Simons gauge theory which are always purely topological theor-
ies. To assure [51] that the variation of the Chern-Simons action is well-defined,
boundary conditions have to be imposed.



TENSOR NETWORK CALCULATIONS

C.1 GENERAL APPROACH

As explained in the sixth chapter, to calculate when the "flip" happens in Z,,
orbifolded tensor networks, certain recursive formulas for the f and g type tensors
in the minimal regions have to be developed. There, the remark was made that
there are different locally minimal regions of a layer of a tensor network. With
minimal, it is meant that the amount of tensors in that regions just suffice for
the greedy algorithm to include the central tensor. In this appendix the recursion
relations are given for both the absolute minimum regions and the maximum of
the locally minimal regions. The only qualatatively new feature here, arises in
the case of the absolute minimal regions. This feature is that there recursive
formula’s are of the form,

/ !
<7+1>:M(f7)+13/
gn+1 gn

where M is 2 X 2-matrix and where P is an extra vector. The reason for this
extra vector is that each tensor will produce more than three tensors in the next
layer and the greedy algorithm only needs three legs. The vector P will remove
the superficial legs from the minimal counting. To obtain the n — oo limit of
these cases, almost the same procedure as explained in chapter six can be used to
work out the above expressions in function of some initial conditions. Specifically,
equations of the form

f/ / n—k
m) =Ml ) + Y MFP.
giz g:c k=0

will be used. Notice that there is an extra term dealing with the vector P. When
trying to determine f], + g, , this term is dealt with by use of the formula

n 1— Zn+1

Z ZF = - (184)

To determine the initial conditions for each different conical defect, the tensor
network must be drawn up to a layer where the total amount of tensors is divisible
by m. There, the minimal /maximal section of tensors must be determined by
observation. Notice also, that the recursive formulas are only valid from that
layer on. By repeating the diagonalization procedure used in chapter six, the
n — oo limit of the resulting expression for the amount of tensors needed for the
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118 TENSOR NETWORK CALCULATIONS

flip can be obtained. The recursive formulas for the different kind of Z,, orbifolds
are given in this appendix. In addition the relevant — being the dominant — parts
of the expressions for the amount of g, + f, tensors for large n resulting from
the recursive relationships are shown.

C.2 CASE 1: Z»
A. Minimal section
St 1 1) \g, -1 1

o (24 V3)2(24+ V3)"
fn+gnN \/g :

B. Maximal section

() =0 6) < e fl):

o (24 V3)2(2 4+ V3)"
fn+gnN 2\/5 :

C.3 CASE 2: Z3
A. Minimal section
Sn+1 1 1) \g&u -1 0

|y o (21 V3)(2+ V)"
fn+gnN \/g .

B. Maximal section

() =0 6) <)

p Lo (24 V3)2(2+V3)"
fn+gnN 2\/§ .

C.4 CASE 3: Zs

A. Minimal section

() =GO () « )



C.4 CASE 3: Zg 119

p Lo (2+V3)(24V3)"
fn+gn"’ 2\/§ .

B. Maximal section

) = (32 () 1 (9) & 1o (P o (P
g;z+1 11 n 0 0 1

;o 32+ V3)(24V3)"
fn+gn"‘ 2\/§ .
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CODE LISTING OF SELECTED GRAPHS

D.1 FIGURE 34

%% preamble

close all

R =1;

eta = -1;

X_00 = cosh(eta)*R:0.00001:10;
X 01 = 10:0.1:1000;

X_0 = [X_00 X_01];

phi = (-35)%pi/180;

figure

%% geodesic 1 & 2

eta = 1;

Y1_1 = (X_0.xtanh(eta))./(1 + X_0);

Y2_1 = sqrt(X_0.%xX_0 - (cosh(eta)*R)"2)./(cosh(eta).*(1 + X_0));

[theta,rho] = cart2pol(Y1l.1,Y2_1);
polar(theta,rho, ’b’)

hold all

[theta,rho] = cart2pol(Y1l.1,-Y2_1);
polar(theta,rho,’b’)

Y1.2
Y2_2

(X_0.*xtanh(-eta))./(1 + X_0);
sqrt(X_0.xX_0 - (cosh(eta)*R)"2)./(cosh(-eta).*(1 + X_0));

[theta,rho] = cart2pol(Y1l.2,Y2_2);
polar(theta,rho, ’b’)
[theta,rho] = cart2pol(Y1l_2,-Y2_2);
polar(theta,rho,’b’)

%% geodesic 3

eta = 0;

Y1.3 = 0;

X_0_3 = cosh(eta):100;

Y2_3 = sqrt(X_0_3.xX_0_3 - (cosh(eta)*R)"2)./(cosh(eta).*(1 + X_0_3));

[theta,rho] = cart2pol(Y1l_3,Y2_3);
polar(theta,rho,’b’)
[theta,rho] = cart2pol(Y1l_3,-Y2_3);
polar(theta,rho, ’b’)
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56

61

66

71

11

CODE LISTING OF SELECTED GRAPHS

%% geodesic 4
eta = -1;
Y1_4 = (X_0.xtanh(eta))./(1 + X_0);

Y2_4 = sqrt(X_0.xX_0 - (cosh(eta)*R)"2)./(cosh(eta).*(1 + X_0));

[theta,rho] = cart2pol(Y1l_4,Y2_4);
theta = theta + phi;

[Y1n,Y2n]= pol2cart(theta,rho);
polar(theta,rho,’g’)

[theta,rho] = cart2pol(Yl_4,-Y2_4);
theta = theta + phi;

[Ylnn,Y2nn]= pol2cart(theta,rho);
polar(theta,rho,’g’)

%% mirrors

Y1_full = [Y1nn Y1n];
Y2_full = [Y2nn Y2n];
Yls_cover = Y1_full;
Y2s_cover = Y2_full;
Yl_final = [];
Y2_final = [];

while length(Yls_cover) ~= 0
[Y1_fund,Y2_fund,Y1ls_cover,Y2s_cover] =
length(Y1_fund)

Y1l_final = [Y1l_final Y1l_fund];
Y2_final = [Y2_final Y2_fund];

end

[theta,rho] = cart2pol(Yl_final,Y2_final);

h = polar(theta,rho,’.r’);

set(h, 'markersize’, 3)

[theta, rho] = cart2pol(Yls_cover,Y2s_cover);

polar(theta, rho, ' m’);

D.2 FIGURE 35

%

o°

param
Beta = 4xpixpi;
phi = (-60)*pi/180;

%% preamble

close all
R=1;

1 =R;

T = 1/Beta;

eta = Beta/(4*xpixpi);
r_plus = (etaxl)/(2x*pi);

mirror(Yls_cover,Y2s_cover);
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61

D.2 FIGURE 35

X_00 cosh(eta)*R:0.00001:10;
X_01 = 10:0.1:1000;
X_0 = [X_00 X_01];

%% COV_FIG

figure
subplot(2,2,1) % first plot in 1 x 3 grid

%% geodesic 1 & 2
Y11 (X_0.xtanh(eta))./(1 + X_0);
Y2_1 sqrt(X_0.*xX_0 - (cosh(eta)*R)"2)./(cosh(eta).*(1 + X_0));

[theta,rho] = cart2pol(Y1l_1,Y2_1);
polar(theta, rho,’b’)

hold all

[theta,rho] = cart2pol(Y1l_.1,-Y2_1);
polar(theta,rho,’b’)

Y1.2
Y2_2

(X_0.xtanh(-eta))./(1 + X_0);
sqrt(X_0.*X_0 - (cosh(eta)*R)"2)./(cosh(-eta).*(1 + X_0));

[theta,rho] = cart2pol(Y1l.2,Y2_2);
polar(theta,rho, ’b’)
[theta,rho] = cart2pol(Y1l_2,-Y2_2);
polar(theta,rho,’b’)

%% geodesic 3

eta_3 = 0;

Y1.3 = 0;

X_0_3 = cosh(eta_3):100;

Y2_3 = sqrt(X_0_3.xX_0_3 - (cosh(eta_3)*R)"2)./(cosh(eta_3).*x(1 + X _0_3));

[theta,rho] = cart2pol(Y1l_3,Y2_3);
polar(theta,rho,’b’)
[theta,rho] = cart2pol(Y1l_3,-Y2_3);
polar(theta,rho, ’b’)

%% geodesic 4

eta_4 = -1;

Y1_4 (X_0.xtanh(eta_4))./(1 + X_0);

Y2_4 = sqrt(X_0.xX_0 - (cosh(eta_4)*R)"2)./(cosh(eta_4).x(1 + X_0));

[theta,rho] = cart2pol(Y1l_4,Y2_4);
theta = theta + phi;

[Yln,Y2n]= pol2cart(theta, rho);
polar(theta,rho,’g’)

[theta,rho] = cart2pol(Yl_4,-Y2_4);
theta = theta + phi;
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[Y1nn,Y2nn]= pol2cart(theta,rho);
polar(theta,rho,’g’)

title(’covering space’)
66
%% FUND_FIG

subplot(2,2,2) % second plot in 1 x 3 grid
71 %% geodesic 1 & 2 (repeated)

Y11 (X_0.xtanh(eta))./(1 + X_0);
Y2_1 sqrt(X_0.*xX_0 - (cosh(eta)*R)"2)./(cosh(eta).*(1 + X_0));

[theta,rho] = cart2pol(Y1l_1,Y2_1);
76 polar(theta,rho,’b’)

hold all

[theta,rho] = cart2pol(Y1l_.1,-Y2_1);

polar(theta,rho,’b’)

81 Y1.2
Y2_2

(X_0.xtanh(-eta))./(1 + X_0);
sqrt(X_0.*X_0 - (cosh(eta)*R)"2)./(cosh(-eta).*(1 + X_0));

[theta,rho] = cart2pol(Y1.2,Y2_2);
polar(theta,rho, ’b’)

86 [theta,rho] = cart2pol(Y1l_.2,-Y2_2);
polar(theta,rho,’b’)

%% Mirrors

Y1_full = [Y1lnn Y1n];
g1 Y2_full = [Y2nn Y2n];

Yls_cover = Y1_full;

Y2s_cover = Y2_full;

Y1l_final = [];

Y2_final = [];
96
while length(Yls_cover) ~= 0
[Y1_fund,Y2_fund,Yls_cover,Y2s_cover] = mirror2(Yls_cover,Y2s_cover,
eta);
length(Y1_fund)
Y1_final = [Y1_final Y1_fund];
101 Y2_final = [Y2_final Y2_fund];

end

[theta,rho] = cart2pol(Yl_final,Y2_final);
h = polar(theta,rho,’.r’);
106 set(h, ’markersize’,3)
[theta,rho] = cart2pol(Yls_cover,Y2s_cover);
hold all
polar(theta,rho, 'm’);
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D.2 FIGURE 35

title( ’fundamental domain’)

%

o°

BTZ

subplot(2,2,3) % third plot in 1 x 3 grid

Y1l = Y1l_final;

Y2 = Y2_final;

X1 = 2.%Y2./(1 - Y1.72 - Y2.72);

X0 = (1 +Y1.72 +Y2.72)./(1 - Y1.%2 - Y2.72);
X2 = 2.%xY1./(1 - Y1.72 - Y2.72);

r_plus = (etaxl)/(2xpi);
phi = 1/(2*xr_plus)*log(((X0-X2).*R)./(X0+X2));
r = r_plus*((X1./R)."2 + 1).7(1/2);

atan(r);
(2/pi)*rho;

rho
rho

h = polar(phi,rho,’.m’)

set(h, 'markersize’, 3)

rectangle(’Position’, [-(2/pi)*atan(r_plus),-(2/pi)*atan(r_plus),2*(2/pi)x*
atan(r_plus),2*(2/pi)*atan(r_plus)], ’Curvature’, [1 1], 'FaceColor’, [
0.12 0.12 0.85 ])

title(’'BTZ: \rho,\theta coordinates’)
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